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I. INTRODUCTION

This is an annual report for the SMM Guest Investigator Program entitled

"Simultaneous Solar Maximum Mission and Very Large Array Observations of Solar

Active Regions" during the period from I September 1985 to 30 August _86.

This program was allocated $28,245 from NASA Grant NAG 5-501 for the period

i April 1986 to 31 March 1987. This allocation was a continuation of previous

funding under NASA Grant NAG 5-501 from I February 1985 to 31 March 1986.

An account of the research done during the first half year of our SMM

Guest Investigator Program may be found in the Semi-Annual Report mailed 23

August 1985. Additional details may be found in the Science review article by

Mukul R. Kundu and Kenneth R. Lang entitled "The Sun and Nearby Stars:

Microwave Observations at High Resolution" [Science 228, 9-15 (1985)].

Here we will present a progress report on the work done between i September

1985 and 30 August 1986. During that period we published three papers that are

reproduced in Section II. We also wrote five papers that have been accepted for

publication; these are reproduced in Section III.

Our research deals mainly with VLAand SMM observations of the ubiquitous

coronal loops that dominate the structure of the low corona. As illustrated in

Sections II and III, the observations of thermal cyclotron lines at microwave

wavelengths provide a powerful new method of accurately specifying the coronal

magnetic field strength. We also delineate processes that trigger solar eruptions

from coronal loops, including preburst heating and the magnetic interaction of

coronal loops. Evidence for coherent burst mechanisms is provided for both the

Sun and nearby stars, while other observations suggest the presence of currents

that may amplify the coronal magnetic field to unexpectedly high levels. Here

we also report the existence of a new class of compact, variable moving sources

in regions of apparently-weak photospheric field.

-4-
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Section IV describes three papers in progress. Two of these papers involve

ongoing comparisons of simultaneous S_M-XRP and VLA-20 cm emission from solar

active regions. In some cases the soft X-ray and 20 cm data describe the same

plasma; the soft X-ray spectral lines are used to determine the elect_n density

and electron temperature while the 20 cm thermal cyclotron llne specifies the

magnetic field strength. There are other instances when there is intense 20 cm

emission without detectable X-ray radiation. In this event, the 20 cm emission

is attributed to gyroresonance radiation of thermal electrons, and the magnetic

field strength is also specified. In other cases, the 20 cm emission is more

extensive than the X-ray radiation, and the microwave brightness temperature is

slightly less than the electron temperature inferred from the X-ray data. Yet,

the coronal loop plasma ought to be optically thick at 20 cm wavelength. This

paradox is explained by a cool plasma that envelops the hotter one detected at

X-ray wavelengths.

The last paper in Section IV describes the first VLA observations of the

Sun at the longer 92 cm wavelength. A hlghly-polarlzed (90%) noise storm was

resolved, and its outward velocity inferred from the time and angular displace-

ments of the X-ray and 92 cm bursts.

In Section V we mention lectures given by the Principal Investigator at

professional meetings. These include the NASA workshop on Coronal and

Prominence Plasmas , the European Workshop on Radio Continua Durln_ Solar Flares,

and Symposium 5 on Synopsis of the Solar Maximum Anal_sls, a part of the XXVI

meeting of the Committee on Space Research (COSPAR).

Our final Section VI discusses funding and future prospects. Here we

mention our plans to submit a proposal for the next round of the _NM Guest

Investigator Program. This proposal will include the analysis of existing

simultaneous observations with the SMM-XRP and the VLA-20 cm, while also

includlng future slmultaneous observations of the low corona at 20 cm, 92 cm and

soft X-ray wavelengths.



TI. PUBLISHED PAPERS

FLARE STARS AND SOLAR BURSTS: HIGH RESOLUTION IN

TIME AND FREQUENCY*

KENNETH R. LANG

Department of Physics and Asmmomy, Tt_s Uniwrsity, Medford, MA 02155, U.S.A.

o.

Abstract. Coronal loops on the Sun and nearby stars are investigated using observations at 20 cm wavelength
with high resolution in time and frequency. Observations of the dwarf M star AD Leonis with high time
resolution using the Arecibo Observatory have resulted in the discovery of a quasi-periodic train ofcircularly
polarized spikes with a mean periodicity of 32 + 5 ms and a total duration of 150 ms. The individual spikes
had ris_ times of < 5 ms, leading to an upper limit to the linear size L _ 1.5 × 10 s cm for the spike emitter.

This size is on]y 0.005 of the estimated radius ofAD Leonis. Provided that the emitter is symmetric, it has
a br/ghtness temperature of Tj _ I0 se K, suggesting a coherent burst mechanism such as an electron-cyclo-

tron maser. Coronal oscillations might modulate the rnuser output, producing the quasi-periodic spikes.
Observations at closely spaced wavelengths, or high frequency resolution, using the Very Large Array have
revealed narrow-band structure (Av/v _ 0.01) in solar bursts and in the slowly-varying radiation of the dwarf
M star YZ Canis Minoris. The narrow.band emission cannot be explained by continuum emission processes,
but it might be attributed to electron-cyclotron maser radiation. Maser action at the second or first
harmonic of the gyrofrequency implies magnetic field strengths of 250 and 500 G, respectively. Thus,

observations with high resolution in time and frequency suggest coherent processes in the coronae of the

Sun and dwarf M stars. The scientific potential of these discoveries may be best fulfilled by the construction

of a solar-stellar synthesis radiotelescope.

1. Ineroduction

Very Large Array (VLA) observations at widely spaced wavelengths refer to different

levels within the ubiquitous coronal loops that are the dominant structural element of
solar active regions. The slowly-varying 6 cm emission often originates in the legs of

coronal loops, while the slowly-varying 20 cm emission comes from the hot dense

plasma trapped within the legs and apex of coronal loops (Lang et al., 1982; Lang and

W'dlson, 1983, 1984; Lang et al., 1983; McConnell and Kundu, 1983; Kundu and Lang,

1985). VLA snapshot maps indicate that the impulsive component of microwave bursts

is usually located near the apex of coronal loops (Marsh and Hurford, 1981; Lang and

Wilison, 1983, 1984; Willsun and Lang, 1984; Kundu and Lang, 1985). These bursts

may be triggered by temperature enhancements within coronal loops or by changes in

the configuration of coronal magnetic fields.

The solar analogy suggests that coronal loops may also play a dominant role in the
microwave emission from dwarf M flare stars. These stars exhibit slowly-varying

microwave radiation that may be similar to the quiescent, or nonfiaring, slowly-varying

radiation of solar active regions. These stars nlso exhibit microwave bursts that are

similar to those emitted by the Sun (Linsky and Gary, 1983; Pallavicini etal., 1985).

Recent investigations have revealed two new approaches to the study of coronal loops

on the Sun and nearby stars. They involve observations at 20 cm wavelength with high

* Proceedings of the Workshop on Radio Continua_ during Solar flares, held at Duino (Trieste), Italy,
27-31 May, 1985.

Solar Physics 104 (1986) 227-233.
0 1986 by D. 2W./_d _A_ Comsmmy
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resolution in time and frequency. Observations with high time resolution using the
Arecibo Observatory have led to the discovery of quasi-periodic spiked emission from

the dwarf M star AD Leonis (Section 2). Observations at closely spaced wavele_ths,

or high frequency resolution, reveal narrow-band structure during solar bursts-m_d in

the slowly-varying radiation of the dwarf M star YZ Canis Minoris (Section 3). This

paper highlights these recent results that seem to require coherent radiation mechanisms.

It also draws attention to their possible impScations for a solar-stellar synthesis

radiotelescope.

2. Qm=si-Peri0die Spikes from AD Leonis

If the solar analogy is applicable, slowly-varying emission and stellar bursts from nearby

stars ought to be emitted from coronal loops that are a fraction of a stellar radius in

linear extent. Thermal bremsstraMung from coronal loops on nearby stars would,

however, be too weak to be detected, and thermal gyroresonant radiation would require

impossibly large coronal loops for this radiation to be detected at 20 cm wavelength.

I
e ,

A I I00 mJy

2

LCP

i , i

I*m,I' I,',2' ,*",3'
UNIVERSAL TIME

Fig. i. Thetotal powerdetectedat a frequencyof 1415MHz(21.2cm) whiletrackingthedwarfM star
AD Leonis.Both the left.handcircularlypolarized(LCP.top)and the fight-hand circularlypolarized
(RCP-bottom)signalsare shown.Here the integrationtimeis 5 ms. The dataexhibita train of five
quasi-periodicspikeswithameanperiodicityof_j.- 32 + 5 ms,a totaldurationof _z,= 150ms(horizontal
bar !), and circularpolarizationsof about33_. The dataalso includeindividualspikesthat are 100_.
lefl-hastdcixcularlypolarized.Eachofthespikeshad a rise timeof _R< 5ms,leadingto an upper_"mtto
the linearsize L _ 1.5x 10scm and a brightnesstemperatureof Tm;_!0 IsK if the spike emitteris

symmetric.

,oh,,%0'
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Non-thermal and/or coherent emission processes are required if the slowly-varying or
burst emission originates from stellar loops or star spots that are similar in size to their
counterparts on the Sun.

As illustrated in Figure 1, observations ofAD Leonis at 1415 MHz (21.2 cm) indicate

a train of quasi-periodic spikes that suggest a coherent burst emitter that is modula_
by coronal oscillations. The quasi-periodic spikes have a mean periodicity of 32 _+5 ms

and a total duration of 150 ms. They have a maximum flux density of 300 m.ly and
circular polarizations of about 33_. Each of the spikes have rise times of _<5 ms, the
integration time employed.

An upper limit to the linear size of the emitting region is L _<1.5 x l0 s cm, the
distance that fight travels in 5 ms. This is only 0.005 of the estimated radius of

AD Leonis (R -- 3.0 x 10_°cm). Provided that the spike emitter is symmetric, it has an
area that is less than 2.5 x 10-5 of the surface area of the star's visible disk. The

maximum flux density and linear size can be combined with the star's distance (4.85 pc)

to infer a brightness temperature of T_ > 1016 K from the Rayleigh-Jeans expression.
The high circular polarization of the spikes indicates an intimate connection with

strong stellar magnetic fields, whereas the high brightness temperatures suggest a

coherent emission mechanism. Similar highly circularly polarized spikes with high

brightness temperatures (TD > 10_2K) have been observed during solar bursts (DrOge,
1977; Slottje, 1978). The spikes emitted from both the Sun and AD Leonis may be

explained by electron-cyclotron maser emission (Melrose and Dulk, 1982). Magnetic
field strengths ofH ffi250 and 500 G are inferred if the radiation is at the second or first

harmonic of the gyrofrequency, respectively.

But what accounts for the quasi-periedic spikes7 Some process must modulate the

coherent burst emitter in a quasi-periodic manner. One possibility is coronal oscillations

that provide a currently-popular explanation for longer (50 ms to 5 s) quasi-periodic
pulsations during some solar bursts (Roberts et al., 1984). An inhomogeneity of size

a = 2 x 107 cm might account for the quasi-periodic spikes with an Alfv6n velocity

corresponding to H = 250 G and plausible values of density.

3. Narrow-Band Structure in Solar Bursts and in the Slowly-Varying Radiation
from YZ Canis Minoris

Recent VIA observations at closely spaced wavelengths near 20 cm have provided

evidence for coherent emission processes during solar bursts (Lang and Willson, 1984).
One highly circularly polarized (100_) burst exhibited a factor of two difference in

brightness temperature (1.5 x l0 s K and 0.8 x l0 s K) at two wavelengths separated by

only 32 MHz (burst 7 ofFigure 2 at 1658 and 1690 MHz). The high circular polarization
and narrow bandwidth (Av/v _ 0.01) of this burst are comparable to those expected

from electron-cyclotron masers. Although the burst source was apparently resolved, the

10 s integration time of the VLA may have integrated several briefer, spatially-separated
coherent spikes.

Narrow-band, slowly-varying microwave radiation has been detected from the dwarf
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F_. l A I_t._cc ofri_t circularlypolarized(RC_) imp.]sireburstsfroma solaractiveregio, observed
at wavelengths ne& 20 ca; (1400 MI_z). The top --d bottom profiles are separated by o_ly 30 MHz; burst ?

has a factor of two difference in br_mess temperature over this narrow frequency interval, suggesting

coherent burst emission. This figure originnlly appeared in Lnng and Willson (1984).

M star YZ Canis Minoris at frequencies near 1465 MHz. Slow variations over time-

scales of an hour and as much as 20 mJy in strength peak at different times for

frequencies v = 1415 and 1515 MHz (Figures 3 and 4), indicating narrow-band struc-

ture of bandwidth/iv <: I00 MHz, or _v/v < 0.I. Cyclotron line structure from gyrore-

sonant radiation can be ruled out because the high flux density and large observing

frequency would require coronal loops that are more than one hundred times larger than

the star.

We might speculate that the slowly-varying radiation from YZ Canis Minoris is due

to continuous low-level, coherent burst activity. High circular polarization would be

expected to be occasionally observed if the coherent mechanism is associated with

-9--
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1415 MHz YZ CMi 12110/84

1415 MHz

E

I=.

40

E =o

.j I0

I0

1515 MHz

1515 MHz

o5

' 4885 MHz

06 01' Oe 09

UNIVERSAL TIME (Hours)

Fig. 3. Slowly-varying emission from the dwarf M flare star YZ Can/s Minoris at two closely spaced

frequencies of 1415 and 1515 MHz and at 4885 MHz. The emission at the two frequencies peaks at different

times, =u88¢stJng a coherent emission mechanism with • bandwidth of less than I00 MHz. There are no

detectable fluctuations at 4885 MHz.
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Fig. 4. VLA snapshot maps of the emission from the dwarfM flare star YZ Canls Minoris. The unresolved

emission peaks at different times at two frequencies separated by only 100 MHz, suggesting a coherent burst

mechanism. The contours are at intervals of 6, 8, 10, 12 .... Jy/beam area, with maximum values of 14 and

22 Jy/beum area at 06:20 UT and 1415 and 1515 MHz, respectively, and 25 and 10 Jy/beam area at

07 : 30 UT for the same respective frequencies.

intense magnetic fields, and the stochastic nature of continued bursts might explain the
variability of the observed microwave radiation.

4. Conclusions

Observations at 20 cm wavelength with high resolution in time and frequency have

provided evidence for coherent emission mechanisms on the Sun and nearby stars.

However, observations are limited by infrequent use of the Arecibo Observatory and
the Very Large Array for solar and stellarobservations. The scientific potential suggested
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by the data presented here can only be fullyrealized by the development of a solar-stellar

synthesis radiotelescope. Such an instrument would be dedicated to solar and stellar

observations with high angular, temporal and frequency resolution.
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ABSTRACT

VLA observations of a solar active region at 10 closely spaced frequencies between 1440 and 1720 MHz are
presented. The synthesis maps show, on two successive days, significant changes in the brightness temperature
within this narrow frequency range. We show that these changes cannot be due to either thermal bremsstrah-
lung or gyroresonance emission from a coronal loop in which the temperature, density, or magnetic field
varies monotonically with height. Instead, we attribute the brightness spectrum to cyclotron fine emission
from a narrow layer where the temperature is elevated above the surrounding part of the loop.

Subject headings: interferometry -- radiation mechanisms -- Sun: radio radiation

1. INTRODUCTION

Very Large Array (VLA) 1 observations of solar active
regions near 20 cm wavelength delineate looplike structures
that appear to connect lower lying areas of opposite magnetic
polarity (Lang. Willson, and Rayrole 1982; Dulk and Gary
1983; Lang. Willson, and Gaizauskas 1983; McConnell and
Kundu 1983). These sources have peak brightness tem-
peratures of between 1.5 x 106 and 4.0 × 10e K, suggesting
that they are the radio wavelength counterparts of coronal
loops seen at soft X-ray wavelengths.

The radiation mechanism responsible for this emission is,
however, the subject of some controversy. Lang. Willson, and
Rayrole (1983) and Dulk and Gary (1983) have, for example,
attributed 20 cm emission to optically thick thermal brems-
strahiung of a hot plasma trapped within magnetic arches con-
necting underlying sunspots. There is no detectable
polarization near the magnetic neutral lines, and this has been
attributed to optically thick emission or to magnetic fields that
are transverse to the line of sight. A few 20 crn loops exhibit
small circular polarization (Pc < 20%) near their legs, and this
has been attributed ot the effects of bremsstrahlung propagat-
ing in longitudinal magnetic fields of strength Ha _ 20-70 G
(Dulk and Gary 1983).

Other VLA observations suggest that low-harmonic gyrore-
sonance absorption may provide the bulk of the opacity in
20 cm loops. McConnell and Kundu (1983) have, for example,
found that the brightness of one loop could be best explained
by gyrocmission near the loop top and thermal bremsstrah-
lung near the feet. Velusamy and Kundu (1981) also compared
radio and X-ray observations of systems of postflare loops, and
found that gyroresonance emission was the most likely mecha-
nism in these sources.

Both competing processes of brernsstrahlung and gyroreson-
ance emission predict a smoothly varying continuum spectrum
that decreases slowly with increasing frequency. The theory of
cyclotron absorption, for example, indicates that observations
at a given frequency, v, refer to a narrow layer in the solar
atmosphere at which v ffi sv s, where s ffi 2, 3, 4 is the harmonic
number and va is the gyrofrequency. If the magnetic field in a

t The VLA is a facility of the National Radio Astronomy Observatory,
which is operated by Associated Univerrdtie_Inc., undercontract with the
National ScienceFoundation.

coronal loop decreases uniformly with height, then it was
thought that the individual cyclotron lines would merge to
form a smooth continuum. Theoretical work has shown

however, that individual cyclotron fines might also be detected
as narrow-band enhancements in the radio-frequency spectra
of solar active regions if the radiation were emitted from rela-
tively thin layers in the corona where the magnetic field is
relatively constant (Syrovatskii and Kuznetsov 1980; Kuznet-
soy and Syrovatskii 1981). The presence of neutral current
sheets, in which the temperature and density are higher than in
the surrounding parts of the loop, might also lead to abrupt
changes in the brightness temperature over a small frequency
range (Syrovatskii 1977; Syrovatskii and Kuznetsov 1980).
Recently, Willson (1983) mapped several active regions at three
closely spaced frequencies near 1446 MHz and found that two
of the sources showed striking changes in brightness within
these narrow frequency ranges. These changes could not be
explained by either thermal bremsstrahlung or gyroresonance
emission from a loop in which the temperature, density, or
magnetic field varied uniformly with height. They could,
however, be explained by individual cyclotron lines emitted in
small regions (10"-30") where the magnetic field was relatively
constant with H _. 125-180 G.

Observations of cyclotron line emission are potentially
important because they provide a means of specifying the
physical conditions within coronal loops and current sheets.
We have now tried to confirm the presence of cyclotron lines
on the Sun by using the VLA to map an active region on two
successive days at 10 different frequences between 1440 and
1720 MHz. In this paper we present these observations and
compare them with theoretical spectra of cyclotron line emis-
sion from coronal loops.

II. OBSERVATIONS

The VLA (B-configuration) was used to observe the active
region AR 4398 on 1984 January 28 and 29. The position of
AR 4398 at 1300 UT on January 28 and 29 was 14°N ll°W
and 14°N 24°W, respectively. The active region was observed
at 10 different frequencies between 1440 MHz (21.8 cm) and
1720 MHz (17.4 cm) with bandwidths of 12.5 MHz during a
10 hr period between 1300 UT and 2300 UT on each day. At
these frequencies the half-power beamwidth of the individual
antennas ranges between 26'.0 and 31'.2 and the synthesized
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beamwidth varies between 3."0 x 3."5 and 3?6 x 4?2. The four
independent intermediate frequency channels now available at
the VLA made it possible to record the left and right circularly
polarized signals of two different frequencies at once. The
active region was observed at successive pairs of frequencies for
a period of 5 minutes, so that all 10 .frequencies could be
observed in 25 minutes. This sequence of observations was
followed by successive 2 minute observations of the calibrator
source 3C 48. The data were calibrated using 3C 48 together
with a correction for the difference in the signals from high-
temperature noise sources located on four of the antennas. The
temperatures of these sources were measured at each frequency
and polarization prior to the solar observations and are
believed to be accurate to <5%. The flux of 3C 48 at each

frequency was determined from its flux of 15.37Jy at
1465 MHz ancl its spectral index of a( = -0.81. Since some of
the observations were made outside of the nominal protected
radio band near 1421 MHz, the total power signal from two of
the antennas was monitored for the presence of interference.
No interference was detected during these observations,
however. We also examined the data for the presence of solar
bursts which could have corrupted the maps at one or more
frequencies. Only one burst was detected, between 1820 and
1950 UT on January 29, and these data were edited before
maps were made. The calibrated data were edited and used
together with the standard CLEAN procedure to make synthe-
sis maps of both total intensity, 1, and circular polarization, V.

The maps of total intensity are shown in Figures I and 2.
There was no detectable circular polarization (VII _ 15%) on
either day, suggesting that the regions were optically thick to
both the ordinary and extraordinary modes of wave propaga-
tion. On both days the region shows a looplike structure of 1'0
to 1'5 in length, whose peak brightness temperature first
increases systematically from ,-, 1.5 × 106 K at 1440 MHz to
,,-4.0 × 106 K at 1658 MHz, and then begins to decrease at the
highest frequencies. In Table 1 we give the brightness tem-
peratures at a point denoted by a cross on the peak intensity at
1658 MHz, and in Figure 3 we plot these temperatures as a
function of frequency. The error bars in Figure 3 represent 3 o
uncertainties determined from the residual noise left on the

CLEANed maps.
As a check on the integrity of the solar calibration pro-

cedure, we have also plotted the brightness temperatures
observed in a loop within the active region AR 4399, located
,-,6_5 to the east of AR 4398. This was the only other major
active region on the Sun during these 2 days. In contrast to AR
4398, the brightness spectrum of AR 4399 is nearly constant on
both days, with an average brightness temperature of Ta _ 1.5
× l0 s K. This result seems to indicate that the changes in
brightness temperature observed from AR 4398 are not
common to all sources, and therefore not due to an artifact of
the calibration or CLEANing procedure.

In Figure 4 we compare the radio maps at the peak fre-
quency of 1658 MHz with Kitt Peak magnetograms taken on

the same day. The radio emission appears to connect regions of
opposite magnetic polarity, suggesting that the sources are
dipolar loops which join the underlying sunspots_ Observa-
tions made at Mount Wilson Observatory (R. Howard, private
communication) indicate that the'Two dominant spots have
magnetic field strengths of IHI _- 2000 G, and that the mor-
phology and surface fields of these spots did not change appre-
ciably from one day to the next. As we will argue in the next
section, this may explain why the spectrum and morphology of
the radio loops were also similar on the two days.

m. DISCUSSION

In this section we will show that the observed changes in
brightness temperature of about a factor of 2.5 over a fre-
quency range of ~ 300 MHz are difficult to explain by either "
thermal bremsstrahlung or gyroresonance emission from a
loop in which the temperature, density, and magnetic field vary
uniformly with height. These radio results, then, appear to
conflict with the results of numerical models of quasi-static
coronal loops which predict smooth gradients in both tem-
perature and density along the loop (e.g., Rosner, Tucker, and
Vaiana 1978; Vesecky, Antiochos, and Underwood 1979). On
the other hand, these sharp changes in brightness temperature
are consistent with the existence of neutral current sheets or

thin inhomogeneous layers in the coronal loop where the tem-
perature or density are thought to be higher than in their
surroundings (Syrovatskii 1977).

As a starting point in our analysis, we assume that the mag-
netic field strength B(Z) in the loop can be represented by a
dipole function, B(Z) = BoR_/(Z + RQ 3, where Z is the height
above the photosphere, Bo (~ 2000 (3) is the magnetic field at
the solar surface, and Ro is the depth of the dipole below the
loop base. IfRv is taken to be equal to one-half the distance, D,
between the two footpoints, then Mount Wilson sunspot
observations indicate D ,_ 8.0 x 109 cm and RD _ 4 × 109 c'm.
We next divide the loop into thin layers of thickness
1.0 × l0 s cm and compute the optical depth due to thermal
bremsstrahlung and gyroresonance emission with assumed
values of temperature and density at each height, Z, in the
loop. In the simplest models, we assume that the loop has a
constant temperature and density between Z = 2 × 10 9 cm
and 5 x 109 cm, the approximate height of 20 burst centimeter
loop emission (Willson and Lang 1984). The equation of trans-
fer for the emergent brightness temperature and circular
polarization as a function of frequency was then solved for
temperatures between 1.5 x l0 s and 4.0 x 106 K, and den-
sities between 1.0 × 10 9 and 5.0 × l09 cm -3, using the equa-
tions for the thermal bremsstrahlung and gyroresonance
optical depth given by Willson (1983). Models were also com-
puted for different values of the parameter 0 (20 ° < 0 < 90°),
the angle between the magnetic field and the line of sight.

The results of these calculations indicate that for this range
of temperatures and densities, and for 0 > 60 °, gyroresonance
absorption would render the loop optically thick with a nearly

TABLE 1

MAXIMUM BRIG_ TEMPERATURES,T_(max), WITHIN AR 4398 AT Dm_rr FP.t.Qta_cn_

Date 1440" 1480 l $15 1558 l $85 1620 1658 1690 1705 1724

1984 Jan 28 ........ 1.4 x Ioe 1.4 x 106 1.6 x toe 1.8 x tOe 2.2 x tOe 3.0 x tOe 3.7 x tOe 3.2 x 10s 2.5 x 10 e 2.6 x 10s

1984 Jan 29 ........ 1.3 x toe 1.7 x toe 1.8 x tOe 2.0 x 10s 2.2 x toe 3.2 x tOe 4.0 x 106 2.8 x 106 2.7 x tOe 2.3 x 10 e

• All frequencies are in megahertz, all temperatures are in keivim, --1 6 --
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temperature for different values of tem-
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AR 4398 (zop, middle) and AR 4399 (botzom)

are also plotted with error bars correspond-

ing to peak-to-peak fluctuations in back-

ground temperature of the synthesis maps.

Curves 1 and 2 correspond to a coronal

loop model that contains a thin

(AL = 1.0 x l0 s cm) layer where the mag-

netic field is H - 145 and 119 G, respec-

tively, and where the temperature and

density at T,-3.8 x 106 K and N,=I.0

× 109 era-'. The temperature and density

in the rest of the loop are taken to be equal

tO T.- LSx 10 eK and N,= 1.0x 10 9

an-,. Curve 3 corresponds to the same par-

ameters as model 1, except that N, ,= 2.0

x 10 =° era-3. Curve 4 corresponds to a

loop in which electron temperature increases

monotonically from T,- 1.5 x 10 e at

z-Sxl09em to T.-3.gxl0eK at

z = 6 x 109 era. in all cases, the angle 0

between magnetic field and line of sight was

taken to be equal to 0 = 70 °.

Brightness temperature of active region
AR 4399, located 46'5 cast of AR 4398,

together with typical ¢nror bars, h; plotted on

bottom panel of figure.



FIG. 4.-VLA synthesis maps of total 
intensity at 1658 M H t  on 1984 January 28 
(lop) and 29 January (bottom), superposed on 
Kitt Peak magnetograms taken on the same 
day. Note that radio emission appears to 
wnnect areas of opposite magnetic polarity, 
and that peak brightness temperature occurs 
nearly along magnetic neutral line. 
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constant brightness temperature between 1.5 x 106 and
4 x 106 K, and a low degree of circular polarization _ <
20%) throughout the range of frequencies observed. This is
because the individual cyclotron lines at different harmonics
that are emitted from a layer with constant temperature would
merge to form a continuum. These results are in agreement
with those of McConneU and Kundu (1983) who found that
20 cm coronal loops would be optically thick to gyroresonance
emission at the third harmonic of the gyrofrequency for mag-
netic fields H _ 130-170 G, temperatures T _ 1.5 x 106 K,
and densities of N, _. 5 x l0 s cm- 3. We also found that these
results are unchanged if the temperature and density are
allowed to "vary monotonically with height. In Figure 3 we
show one such model in which the temperature varied from
T,=l.5x 106K at Z=-5x109cm to T,=3.8x 106K at
Z--6 x 109 cm.

Instead, we find that the peak in brightness temperature can
be produced if the temperature, say T_, in one of the layers with
constant magnetic field is assumed to be higher than in the
other layers. In this case, the individual cyclotron line with
peak brightness temperature T_ will appear above the contin-
uum spectrum produced by the other layers in the loop. The
results of these model calculations are shown in Figure 3 for
different values of the magnetic field strength, temperature, and
density for which the peak at ~ 1658 MHz is a harmonic of the
gyrofrequency. We find that the spectrum can be satisfactorily
fit if the loop contains a thin layer in which T_ =- 3.5-4.0 x 106
K, where the magnetic field is H _ 145 G (n -- 4), or possibly
H -- 119 G (n =- 5). For n -- 3 (H -- 197 G), the line profile is
too wide and flat-topped, while for n > 6 (H > 100 G) the lines
are optically thin. That is, one explanation of these brightness
temperature variations is the existence of a thin layer in
which the temperature is ~ 3 times higher than in the rest of
the loop where T, _-1.5 x 106 K. For an electron density
of N e _- 109 crn -a, we obtain good fits for
1 x 10T crn < AL < 1 x l0 s cm. For narrower layers, the
lines become optically thin and do not give a good fit to the
data. The data also constrain the angle 0 to 0 _ 65°-80 °, since
smaller values would yield unacceptably high circular polariz-
ation (Pc > 30%), and higher values would result in cyclotron
line profiles that are too wide and flat-topped. We also find

that these results are relatively insensitive to the assumed
density in the heated layer, up_o N, = 2 x 10 t° crn -3. For
higher densities, thermal bremsstrTa'hlung becomes dominant in
the layer, resulting in a sharp step in brightness temperature
above ,-_1600 MHz (Fig. 3).

The fact that the brightness spectrum is nearly identical on
both days suggests that the physical conditions in the loop
were similar on these days. As noted earlier, the magnetic fields
of underlying sunspots were relatively constant, so that one
might also expect the coronal extension of these photospheric
fields to be also relatively unchanged. The frequency of the
cyclotron line emission would, under these conditions be rela-
tively unaffected, and this might explain the similarity of the
microwave spectrum from one day to the next.

The physical mechanism that gives rise to a thin, apparently
stable, hot layer in the corona is uncertain. We note, however,
that EUV observations of coronal loops have revealed the
presence of temperature inhomogeneities in a number of
sources (Foukal 1975, 1976; Raymond and Foukal 1982; Pye
et al. 1978). These inhomogeneities cannot be explained by
quasi-static loop models in which the pressure is assumed to be
uniform (e.g., Rosner, Tucker, and Vaiana 1978), but they may
be accommodated in more sophisticated models in which the
pressure and heat deposition are allowed to vary with height
and distance in the loop (Serio et al. 1981). Whether these
structures represent current sheets or regions where the
heating rate is higher than in the surrounding parts of the loop
is also an open question at this time. Future observations with
the VLA and other multifrequency radio interferometers,
together with observations at ultraviolet and X-ray wavelength
with the repaired SMM, may provide a more complete descrip-
tion of the magnetic field temperature and density stratifi-
cation of active region coronal loops.

The author wishes to thank Kenneth R. Lang for useful
discussions and an anonymous referee for helpful suggestions.
Solar radio interferometric studies at Tufts University are sup-
ported under grant AFSOR-83-0019 with the Air Force Office
of Scientific Research. Comparisons of VLA and Solar
Maximum Mission satellite data are supported under NASA
Guest Investigator grant NAG 5-501.
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ABSTRACT

Solar active region AR 3804 was observed on the same days with the RATAN 600 and the VLA in 1982
July. The emission at wavelengths between 2 and 4 cm consisted of narrow (_ < 40"), bright (Ts _ 0.2 to
6 × 10 6 K) core sources surrounded by a weaker (Ts _ 104-10 s K), extended (_ _ 200") halo. The brightest
core sources are associated with sunspots and are interpreted in terms of the gyroradiation of thermal elec-
trons at the second and third harmonics of the gyrofrequency. Two of the core sources were associated with a
filament that lies above the magnetic neutral line in the photosphere. One of these filament-associated sources
has a flat spectrum and is attributed to thermal bremsstrahlung. Relatively high magnetic field strengths of
H _, 536 G are inferred if the circular polarization of this source is due to propagation of the bremsstrahlung
in the presence of a magnetic field, and even higher magnetic field strengths are required if the radiation is
thermal gyroemission. Lower magnetic fields can be obtained if the radiation propagates through a region of
transverse magnetic fields higher in the corona where polarization inversion occurs. The other filament-
associated source had a high brightness temperature and steep radiation spectrum that cannot be attributed
to either thermal bremsstrahlung or thermal gyroradiation. The weak magnetic field strengths at photospheric
levels require implausibly high electron temperatures ff the high brightness temperatures are to be explained.
This source might be attributed to currents that enhance coronal magnetic fields. In this event gyroemission
might account for the radiation. Alternatively, it may be due to nonthermal radiation such as the gyrosynch-
rotron radiation of subrelativistic electrons. VLA synthesis maps at 20 cm reveal hot (Tj) _. 106 K) coronal
loops that connect underlying sunspots of opposite magnetic polarity, but RATAN 600 observations reveal
the presence of a much more extended source that accounts for the vast majority of the flux detected at this
wavelength. This extended source may also be attributed to the gyrosynchrotron radiation of subrelativistic
electrons.

Subject headings: radiation mechanisms- Sun: radio radiation -- Sun: sunspots

I. INTRODUCTION

Very Large Array (VLA) observations with high angular
resolution (0 ;_ 1") at different microwave wavelengths ()_- 2,
6, and 20 cm) have been used to specify the temperature and
magnetic structure at different heights in solar active regions.
These multiple-wavelength observations specify the three-
dimensional structure of active regions in the transition region
and the low solar corona (Lang and Wilison 1983, i984; Lang,
Willson, and Gaizauskas 1983; Shevgaonkar and Kundu 1984;
Kundu and Lang 1985). However, active regions often have a
complex structure with local sources that have different emis-
sion mechanisms (Gelfreikh et al. 1970; Kundu 1982).

Measurements of the spectrum and polarization of the local
sources can help specify their emission mechanisms, while also
supplementing the interpretation of the VLA observations. We
have therefore begun collaborative observations in which the

=The Very Large Array (VIA) is a facility of the National Radio
Astronomy Observatory,which is operatedby AssociatedUniversities,Inc,
undercontract withthe NationalScienceFoundation.

same active region is observed by the VLA and the Soviet
RATAN 600 (Radio Astronomy Telescope of the Academy of
Sciences [Naukl). The RATAN 600 observations provide high
angular resolution in the east-west direction at five wave-
lengths between 2 and 4 cm, thereby determining the radiation
spectra of the local sources. Accurate polarization measure-
ments (to 0.5%) are also made at these wavelengths, while
more extended structuresare detectedat decimetricwave-

lengths(seeTable I).
The VLA and RATAN 600 observationscomplement each

other.The VLA provideshigh angular resolutionin two

dimensionsatthreewavelengths,but the wavelengthsare not
closeenough todeterminethespectraofthelocalsources,and

the polarizationaccuracy isonly ,,-10%.The RATAN 600
provides information on extended sources that are not
detectedwith the VLA becauseof incompleteUV coverage.
On the other hand, confusion arisingbecause of the poor

angularresolution(inone dimension)ofthe RATAN 600 can
be overcome by VLA observations.

Inthispaper we willemphasizetheuniquecapabilitiesofthe
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cm emission consists of two components: one elongated com- 
ponent that connects underlying sunspots of opposite mag- 
netic polarity, and a more compact source that also lies 
between oppositely polarized sunspots. The radiation at 20 cm 
wavelength is therefore attributed to the hot (TB E IO6 K), 
dense plasma that is trapped within magnetic loops that 
connect underlying sunspots of opposite magnetic polarity. 
The linear extent of the 20 cm coronal loops is lO9-lOio cm. 
These results confirm previous work indicating that 20 cm 
VLA observations delineate the structure of the ubiquitous 
coronal loops that had previously only been detected at X-ray 
wavelengths (Lang, Willson, and Rayrole 1982; Dulk and 
Gary 1983; McConnell and Kundu 1983). 

The RATAN 600 observations at 13 and 21 cm indicate an 
extended source whose angular size sz 4' is comparable to 
that of the entire active region; Such extended sources are often 

TABLE 2 
P~AMEITW FQR F m  CORE RADIO SOURCES , 

P C  T. Wavelength I -  
(Jyperarec)  4 (YO) (lo6 K) core (cm) 

A ......... 2.0 2315 s 8 "  ... 20.23 
10 53 0.28 2.3 360 
13 100 0.43 2.1 535 
17 100 0.49 3.2 560 

4.0 165 23 ... 0.11 

B ......... 2.0 
2.3 
2.1 
3.2 
4.0 

c ......... 2.0 
2.3 
2.1 
3.2 
4.0 

D ......... 20 
2.3 
2.1 
32  
4.0 

941 
1314 
1162 
912 

1024 
801 

1356 
2080 
1944 
4012 
315 

1308 
2648 
4212 
6615 

17 ... 0.32 
14 8 0.15 
16 30 0.11 
18 40 0.80 
18 ... 1.32 
12 ... 0.39 
14 7 0.14 
15 19 1.46 
20 11 1.44 
24 ... 3.88 
30 ... 0.06 
23 28 0.44 
23 45 1.22 
25 33 2.50 
24 ... 6.45 

~~ 

undetectable on VLA synthesis maps. The total flux density of 
the 21 cm extended source detected with the RATAN 600 is 
1.5 x lo5 Jy, whereas the total flux density of the 20 cm loops 
detected with the VLA is 3.0 x lo3 Jy. This indicates that the 
Eiin ef thr: 20 cin ccrma! !cops detected ~ 4 t h  the VLA is cn!y 
-2% of the total flux of the entire active region at 21 cm. 
Thus, the coronal loops may be superposed upon much more 
extended sources that account for most of the active region flux 
at these wavelengths. 

25 N 
\ July 12,1982 

\c 

2 6 N  
23  S 

+ 2' *I' 0 -I' - 2' 

FIG. -3.-VLA synthesis map of the 20 an emission from AR 3084 on 1982 
July 12 is superposed upon the sunspot picture provided by M. N. Gnevyshev. 
The sunspots (block) have numbers comsponding to the longitudinal mag- 
netic field strength in hundreds of p u s s  and letters denoting the magnetic 
polarity C N or " S 3. The 20 cm contours u c  of equal brightness tan- 
peraturc comsponding to 010.4, 0.6.0.8, and 1.0 times the peak brightness 
t e m m t u l c  of 1.8 x lob K. 
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III. DISCUSSION

The sunspot-associated core sources A and C may be attri-
buted to gyroradiation of thermal electrons at the second and
third harmonic of the gyrofrequency. Strong evidence for gyro-
resonance absorption at coronal levels in solar active regions
was provided by Kundu, Schmahl, and Gerassimenko (1980)
through a comparison of microwave, EUV, and X-ray obser-
vations. The near equality of the microwave brightness and
electron temperatures indicated that the microwave emission
was thermal. The measured electron densities and tem-

peratures indicated that free-free absorption is inadequate and
that gyroresonance absorption at the second or third harmonic
of the gyrofrequency provides sufficient optical depth at micro-
wave wavelengths. Thermal gyroradiation at coronal levels
above sunspots was additionally confirmed by the detection of
circularly polarized ring-shaped or horseshoe structures
(Alissandrakis and Kundu 1982; Lang and Willson 1982) that
were predicted using the theory of gyroresonant emission from
individual sunspots (Gelfreikh and Lubyshev 1979). It is also
consistent with the 100% circular polarization observed for the
core source A.

The magnetic field intensity, He, at the bottom of the corona
may be inferred from the short wavelength limit, ;to, of the
polarized gyroresonant emission through the relation
(Akhmedov et al. 1982)

3570

Hc -- _ gauss, (I)

for the third harmonic. For core source A, a value of H c ffi
1690 gauss is obtained. This may be compared with the mag-
netic field strength H -- 2100-2600 gauss for the sunspots in
the underlying photosphere.

The filament-associated core source B has the flat spectrum
of optically thin thermal bremsstrahlung. A lower estimate to
the emission measure, S N2,all, can be obtained by assuming
that the electron temperature, T, is equal to the brightness
temperature, Ts, at longer wavelength ,_ ffi 4.0 cm. The relevant
formulae (Lang 1974) then give S NZ,dl = 5.6 x 1029 crn -5 and
an electron density N e _ 2.1 x 10_° crn -3 for core source B.

The observed circular polarization of the filament-
associated source B might be explained in terms of a propaga-
tion effect in which the optical depths of the ordinary and
extraordinary waves differ. In the quasi-longitudinal (Q-L)
approximation for wave propagation in the direction of an
external magnetic field, the degree of circular polarization
Pc "_ 2vs cos 0/v, where the gyrofrequency vs -- 2.8 × 106H
Hz in a longitudinal magnetic field strength of H, the angle
between the line of sight and the direction of the magnetic field
is 0, and v is the frequency of the radiation. At our observing
wavelength of ). _ 3 cm where the circular polarization Pc _
30% we obtain H = 536 gauss for Q-L propagation. Although
this longitudinal magnetic field strength may be large for a
filament associated source, it cannot be avoided by an appeal
to the alternative gyroresonant emission process.

The optical thickness due to gyroresonant absorption
increases with increasing angle, 0, between the line of sight and
the direction of the magnetic field, and we might expect a large
0 near the magnetic neutral line. However, even with 0 = 85 °,
plausible values for the electron temperature, T_ _ 2 × 106 K,
electron density N. _ 10 t° cm -s, and extent L _ 109 cm indi-
cate that the highest harmonic, s, of the gyrofrequency that is
consistent with the observed brightness temperature of Ts ffi

1.0 × 106 K is s ffi 5 (see McConnell and Kundu 1983, for the
relevant formulae). This harmonic corresponds to a longitudi-
nal magnetic field strength of H _ 714 gauss if the gyro-
frequency is at _. ffi 3 cm. Higher harmonics that correspond to
weaker magnetic fields require implausil_Iy high electron tem-
peratures to produce the observed brightness temperature.

One method of accounting for circular polarization with
lower magnetic field strengths involves a polarization inversion
in a region of quasi-transverse (Q-T) magnetic field (Cohen
1960). The coupling of the ordinary and extraordinary modes
as the radiation passes through the Q-T region will cause an
inversion in the sense of circular polarization if the frequency v
is less than the critical frequency, v r, given by v_ ffi
I01_N, LsH 3. Assuming Ne ffi 101° cm -3, a magnetic scale
length of L s ffi 109 cm and vr > 10_° Hz, we find H > 46
gauss. This inversion occurs high in the corona above the
region where the radiation is formed. However, because source
B is located above a magnetic neutral line, we have no evidence
for whether or not a polarization inversion has taken place.

Kundu et al. (1977) and Kundu and Alissandrakis (1984)
have provided evidence for polarization inversion in the
regions of bright 6 cm sources (Tin_ 2 x 106 K) associated
with magnetic neutral lines. Their observations led to an esti-
mate of H ~ 20 gauss for the Q-T region. Similar values of
magnetic field strength in the Q-T region have been inferred
from centimeter-wavelength polarization inversions by
Peterova and Akhmedov (1973).

Of special interest is the filament-associated core source D.
This source has a large brightness temperature of Te _ 7 x I06
K at ;. ffi 4 crn and an exceptionally rapid increase of flux
density with wavelength. Because the optical depth must be
less than unity in order to account for the observed circular
polarization, the electron temperature must be greater than
7 x 106 K. This unusually high electron temperature argues
against thermal emission processes. Moreover, the steep radi-
ation spectrum rules out thermal bremsstrahlung.

Although one can obtain a steep spectrum from thermal
gyroemission as the result of an exponential term in the optical
depth (see McConnell and Kundu 1983), the region must have
an implausibly high magnetic field strength. If the radiation
were due to gyroemission at the second harmonic of the gyro-
frequency, then a magnetic field strength of H -- 1800 gauss is
implied. This is inconsistent with the fact that the source lies
above a magnetic neutral line in the solar photosphere where
much weaker magnetic fields prevail. When more plausible
magnetic field strengths of H ~ 140 gauss are assumed for the
regions where T_ _ 106 K, then the observed radiation must
occur at high harmonics of the gyrofrequency (s -- 26 for _. - 3
era). The optical depth due to gyroresonance absorption is
then negligibly small, and implausibly high electron tem-
peratures of T, _, l0 T K are inferred. However, there is the
possibility that strong currents produce higher magnetic fields
in the low corona than those expected from current-free
extrapolations from photospheric values. In this event thermal
gyroemission might account for the radiation.

An alternative explanation for the radiation from the core
source D may be some sort of nonthermal emission mechanism
(Gelfreikh et al. 1970). Such a mechanism was suggested by
observations of 6 cm sources of high brightness temperature in
regions where the magnetic fields are weak 0Vebb et al. 1983).
These sources have been attributed to the nonthermal syn-
chrotron emission of mildly relativistic electrons (Chiuderi
Drago and Melozzi 1984).
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One possibility is that source D is the gyrosynchrotron radi-
ation of subrelativistic electrons. The theoretical formulae

describing gyrosynchrotron radiation have been given
(Ramaty 1969; Takakura and Scalise 1970; Ramaty and Pet-
rosian 1972; Petrosian 1981). Theoretical results of the
gyrosynchrotron radiation from mildly relativistic electrons
have been summarized by Dulk and Marsh (1982), who
provide simplified expressions for nonthermal (power-law) and
thermal (Maxwellian) distributions. Using their formulae, we
find that a nonthermal electron energy distribution with a
power-law index 6-- -4.0 and a magnetic field strength of
H = 40 gauss describes the flux density spectrum of source D
between 2.0"and 4.0 cm. The observed flux density can be
accounted for with a magnetic field of strength H = 40 gauss
and an electron density N -- 2 x 109 cm -3 for electrons with
energies E > 10 keV. These values of H and N may plausibly
account for the observed emission from source D.

The extended component of decimetric emission at 13 and
21 crn wavelength may be similarly accounted for by
gyrosynchrotron radiation. Plausible magnetic field strengths
of H _ 80 gauss can be inferred from the observed circular
polarization (15%-50%) and Takakura and Scalise's (1970)
formulae for the volume emissivity of the ordinary and extra-

ordinary waves. Because of the much larger volume of the

extended emission, the required_.electron density N e _ 102
cm- 3 may be relatively low.

One possible difficulty with this explanation is that some as
yet unspecified mechanism must be continually accelerating
the electrons. For example, the energy loss by synchrotron
radiation (Lang 1974) with a power-law electron energy dis-
tribution has a half-time for the total emitted radiation

(Chiuderi and Chiuderi-Drago 1967) of several hours for a
magnetic field strength ofH = 40 gauss.
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SOLAR BUBST PRECUWOBS AND ENERGY BUILD UF' AT MICROWAVE WAVELENGTHS 

Kenneth R. b n g  and Robert F- W i l l ~ o n  

Department of Physics, Tufts  University, Hedford, MA 02155, U.S.A. 

ABSTRACT 
OF POOR QUALllY - 

We summarize high-resolution microwave observations (VLA) of heating and magnetic t r i gge r ing  
i n  coronal loops. Magnetic changes tha t  precede so la r  eruptions on time scales  of tens of 
minutes involve primarily emerging coronal loops and the in t e rac t ion  of too or  more loops. 
Thermal cyc lo t ron  l i n e s  have been detected i n  coronal loops, suggesting &he presence of hot 
current  sheets  that enhance emission from re l a t ive ly  th in  layers  of enhanced temperature and 
cons tan t  magnetic f i e ld .  These current  8heets may play a r o l e  in  the exc i t a t ion  of so l a r  
bursts .  A filament-associated source with a high brightness temperature and s teep r ad ia t ion  
spectrum occurs above a region of apparently weak photospheric f i e l d .  This source might be 
a t t r i b u t e d  t o  currents  that enhance coronal m g n e t i c  f i e lds .  Compact ( $  - 5 " )  t r ans i en t  
sources with l i f e t imes  of 30 t o  60 minutes have also been detected in  regions of apparently 
weak photospheric f i e ld .  
simultaneous SM!+XRE' observations. 

We conclude by conparing VLA observations of coronal loops with 

MAGNETIC W G E S  AND PREBURST tIEATINC 

The VtA has r ecen t ly  been used t o  detect  changes i n  the configuration of coronal magnetic 
f i e l d s  and temperature enhancements within coronal loops that are important i n  the 
e x c i t a t i o n  of so l a r  bursts. It has long been known t ha t  solar  eruptions a re  int imately 
connected wlth the  magnetic f i e l d s  i n  ac t ive  regions, f o r  the ult imate source of energy 
€or  these bu r s t s  must be magnetic energy. It has only recent ly  been r ea l i zed ,  however, 
t h a t  evolving magnetic f i e l d s  i n  the so la r  corona may play a dominant ro l e  i n  t r i gge r ing  
s o l a r  erupt ions I l l .  

! 
! 
i 
I 
I 
I 

j 

, 
I 
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Fig. 1. The ten second Q.L.A. synthesis  maps of the impulsive phase of two so la r  bu r s t s  
a t  20 cm wavelength superposed on €Ia photographs of the op t i ca l  f l a r e s  taken at the same 
t i m e  a t  the Big Bear Solar Observatory. 
coronal loops tha t  a r e  about 40,000 kilometers above the  f l a r ing  region seen at o p t i c a l  
wavelengths. The western s o l a r  limb i s  v i s i b l e  in both photographs. 

P r e f l a r e  changes i n  ac t ive  regions are detected as increases i n  the i n t e n s i t y  and polariza- 
t i o n  of the microwave emission at centimeter vavelengths. 
e rupt ions  on time scales of 10 minutes t o  an hour. 
by the Very Large Array (VLA) has shown t h a t  these increases a r e  r e l a t ed  t o  preburst  heat- 
i n g  In coronal loops and t o  changes i n  the coronal magnetic f i e l d  topology f21 .  
snapshot maps have also made possible tests of f l a r e  models t ha t  could not be carr ied out 
a t  o p t i c a l  wavelengths. 
apex of coronal loops, while the o p t i c a l  flare$ occur at the loop footpoints  (See Fig. 1). 

The 20 m burs t s  or iginate  near the tops of 

These increases  precede s o l a r  
The high angular r e so lu t ion  provided 

The VLA 

For instance,  the region of microwave energy r e l ease  occurs a t  the 
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The VLA results indicate that preburst changes can be ordered into three major categories:
,t

;. (I) ,changes within a single coronal loop, (II) the emergence of coronal loops, and (III)
£t%teractlon between coronal loops. As lllustrated in Figure 2, coronal loops or arcades of

i loops often begin to heat up and change structure about 15 minutes before the eruption of
_i Imp-lslve bursts. Examples of the other types of Isgnetlc interaction detected by the

University of Naryland and Tufts groups are given in the review by Kundu and Lsng /2/.
. i

ORIGi _IAL PAGE F_ / _ ,o--,..=,

OF PI)eR QUALITY S __._ _.

Flg. 2. The tlme profile of a solar burst at 20 c= wavelength suggests heatlng 'ur_tnln a
coronal loop prior to the emission of two iapulslve microwave bursts. Radio and X-ray data

have been combined to derive a peak electron temperature Te of 2.5 x 107 K and an average
electron density Ke of 1010 c=-3durlug the heating phase. The changing orientation

111ustrated in the I0 second VIA snapshot maps could be related to the shear of photo-
spheric fields.

THERMAL CYCLOTRON LINES AND EVIDENCE FOR CURRENTS

Theoretlcal work has shown that indlvldual cyclotron lines might he detected as narrow-band
enhancements in the radio-frequency spectra of solar active regions /3/. The spectra of

individual cyclotron lines have subsequently been observed at wavelengths near 20 cm when
the apex of a coronal loop is resolved /4/ - see Figure 5. This is because the magnetic

field strength is relatively constant near the loop apex; the cyclotron lines would merge

into a continuum along the loop legs where the magnetic field strength decreases uniformly
wlth height. Neutral current sheets might also play a role, leading to intense radio
emission from a thin layer near the loop apex. Both a uniform fleld and a steep temperature

gradient in the uniform region are probably required to detect the cyclotron lines. In any
event, observations of individual cyclotron lines indicate magnetic field strengths of
H - 145 ± 5 G at the apex of some coronal loops. Observations of indlvidual cyclotron

lines provide an unusually accurate method of specifying the coronal magnetic field
strength, while also suggesting the presence of currents.

Evidence for current ==pllflcatlon of the coronal magnetic field may be provided by sources
of high brightness temperature and steep radiation spectrum above regions of apparently-weak

magnetic field /5/. An example is the fil=,,ent assoclated source D whose spectrum Is shown

In Figure 4. If this emission ls due to thermal gyroradlatlon, strong magnetic fields are
required to produce gyroradiatlon at the first few harmonics of the gyrofrequency. Righer

harmonics produce insufficient optical depth to account for the high brightness tempera-

tures. The strong magnetic fields could be obtained If currents amplify the magnetic field
in the low corona to values greater than those expected from extrapolations from the photo-

sphere. The emission could alternatively be due to nonthermal radiation in weak magnetic

fields. Nonthermal synchrotron radiation from mildly relativistic electrous Is one
posslblllty, but some as yet unspecified mechanism must be continuously accelerating the
electrons.

COMPACT VARIABLE SOURCES

We have recently discovered compact, variable highly-polarlzed sources in regions of
apparently-weak photospheric magnetic field /6/. Our subsequent VIA observations have

confirmed the existence of compact, variable 2 c= sources that are not associated with

active reglons_ but these sources had no detectable circular polarization.

The 2 cm maps showed two compact (6 = 5"), highly clrcularly polarized (o c = 80 to 90Z)
sources that:vary on time scales of 30 to 60 minutes. The left circularly polarized source

varied In maximum brightness temperature from T B = 2.0 x 105 K to TB < 0.5 _ 105 K.
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Fig. 3. VLA data at ten closely-spaced frequencies near 1440 HHz (20 c=) shoving thermal

cyclotron line spectra fro_ active region AR 4398 on successive days, together with opti-

cally-thick thermal bremsstrahlung spectra frc_ active region /d_ 4399 on the same days.
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Fig. 4. The radiation spectra for the three types of sources usually detected at short

centimeter wavelengths. The most common type of source is the sunspot-associated component

(A and C) that is attributed to thermal gryoresonance radiation in the legs of coronal loops

that are connected to the underlying sunspots. Source D is a filament-assoclated component

located above a magnetic neutral line in regions of apparently-weak magnetic field. It

may be due to thermal gyroradiation in current-ampllfled magnetic fields. The filament-

associated source B has the flat spectrum of optically-thln thermal bremsstrahlung.

Comparisons with Hr. Wilson magnetograms indlcste that the two compact, variable sources

werelocated in regions of apparently-weak photospheric magnetic field (H < 80 G), and

that they did _ot overlie sunspots. The high polarization of these sources is therefore

somewhat enigmatic, for the polarization of thermal radiation requires strong magnetic

fields of H -2,000 G.

The enigmatic presence of hlghly polarlzed sources in regions of apparently-weak photo-

spheric magnetic field may be explained by any one of three hypothesis. First, the photo-

spheric field may have strengths of up to 2,000 G in compact regions that are not readily

detected by the photospheric magnetograms. Alternatively, the magnetic field in the

transition region or the low corona may be amplified by currents to a strength above that

in the underlying photosphere. If either of these hypothesis is true, then the high cir-

cular polarization of the 2 cm sources can be attributed to either thermal gyroradlation

or the propagation of thermal bremsstrahlung in the presence of a magnetic field of

strength H - 2,000 G. -A third hypothesis is that the compact 2 cm sources are due to non-

thermal gyrosynchrotron radiation of mildly relativistic electrons in relatively weak

magnetic fields of strength H - 50 G.

ONGOING COMPARISONS OF VLA AND S_M-XRP DATA

{_e are continuing "with a comparison of 20 cm Coronal loop data (VLA) _rlth soft X-ray data

obtained with the STd satellite. In some instances, there is radiation at 20 centimeters



wavelength near sunspots w h e r e  no X-ray rad ia t ion  is detected j7 j .  I n  other  Cases, the  
20 centimeter r ad ia t ion  appears at  the apex of coronal loops, but v i t h  a s l i g h t l y  lover 

106 K, i n fe r r ed  from the  X-ray data. This may be explained by a l o w  temperature plasma 
‘ d t h  & - 105 K t h a t  lovers the e f f ec t ive  brightness temperature of the rad io  br-sstrah- 
lung while not  a f f ec t ing  the X-ray da ta  that only detect6 the lo6 K plasma 181. 

, bl;ightness temperature, Ig 1*4 t o  x lo6 K, than the e l ec t ron  temperature, Te - 3.0 x 

ORIGINAL PAGE E 
QuAerOv 

.- - 
Pig, 5, A comparison of t he  20 an emission (V.L.A.-left), s o f t  X-ray (S.H.H.-middle) and 
Aa (SOON-right) emission of an ac t ive  region on the same day. 
f i d u c i a l  marks on the axes i s  60 arc-seconds. 

The angular spacing between 

As i l l u s t r a t e d  i n  Pigure 5 ,  there  are other  instances i n  vhich the 2O-cm rad ia t ion  and 
t h e  s o f t  X- ray ’dss ion  have the  same angular extent. 
temperature of the  rad io  d s s i o n  has the same value as the  e lec t ron  temperature, Te - 3 x 
106 K, i n fe r r ed  from the  X-ray data. 
t he  thermal bremsstrahlung of t he  X-ray d t t i n g  plasma (e lec t ron  dens i ty  & - 2 x 1O1O 
but in this ins tance  we have a l s o  detected a cyclotron l ine .  
cates a t h i n  layer of T, - I x lo6  K with a magnetic f i e l d  s t r eng th  of E - 145 or  187 G 
(harmonic n = I or  3). 
fo re  a l s o  seem to, produce s t rong gyroresonant radiat ion a t  20 cent imeters  wavelength. 

In this case, the -ximum brightness  

A t  f i r s t  s ight  i t  would seem that the 20-cm emission is 

Preliminary modeling indi- 

The thennal e lec t rons  that  give r se t o  the X-ray rad ia t ion  there- 
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INTRODUCTION

The relatively recent development of satellite-bourne X-ray telescopes and

ground-based aperture synthesis radio telescopes has led to an examination of the

solar corona w_th unpreeendented resolution in space, time and frequency. The

high spatial and spectral resolution of the X-ray instruments aboard Skylab and

the Solar Maximum M_ssion (SMM) satellite have, for instance, showed that coronal

loops dominate the structure of the Sun's lower corona [see Valana and Rosner

(1978) for a revlew]. Strong magnetic fields hold a hot, dense plasma vlthln the

ubiqultous coronal loops.

Observations of soft X-ray spectral lines indicate that the quiescent, or

non-flaring, coronal loops have electron temperatures Te _ 2 to 4 x 106 K and

electron densities Ee -- 109 to 1011 cm -3 with total extents L-_I09 to 1010 cm.

Similar temperatures are inferred from radio-wavelength brightness temperatures the=

are comparable to _he local electron temperatures.

The detailed temperature and magnetic structure of the quiescent, or non-flaring,

coronal loops has been inferred from radio wavelength synthesis observations.

Synthesis maps describe the two-dimensional distribution of source brightness and

the two-dimensional szructure of the magnetic field [see Kundu and Lang (1985)

for a review]. The unique ability to specify the strength and structure of

Zhe coronal magnetic fields is an important aspect of _he radio wavelength synthesis

maps.

Our current understanding of coronal loops is sunnmrized in =his chapter. It

includes observations from ground-based radio telescopes and from X-ray telescopes

lofted above the a_mosphere, as well as theoretical interprets=ions of these
observaEions.

The remaining sections of this intro6uctory over_ew highlight both the '

observational and theoretical results _hat are discussed in greater detail in the

following papers. We begin by discussing the three-dimenslonal slructure of coronal

loops. Alternative radiation mechanisms are then described _-ithin the context of

bo_h _he radio and X-ray emission. Various me_hods of determining the strength and

structure of.the coronal magnetic field are then described. The final sections of
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this Introduction Include the coronae of nearby stars and future prospects for radlo

diag_ostlcs of coronal loops.

THREE DIHENSIO_/i_ STRDCTURE OT CORONAL LOOPS

Observations at different radio wavelengths generally sample different levels

within coronal loops, vtth longer wavelengths referring to higher levels.. The

helghts of the radlo structures can be inferred from tbelr angular dlsplacements
from underlying photospheric features, and the two-dlmenslonal maps at dlfferent

radio wavelengths can be combined to. speclfy the three-di_enslon-'kl structure

of coronal loops. The accuracy of these height deter_Lnatlons depends on the

geometry of the ma_netAc field, and the accuracy is greatest near the llmb.

• _ 6 ¢m LEG

\ <=:" +-%.

IMB 6 tm LE.G

Figure 1. A VLA synthesis map of the total intensity, I, of the 20 c= e_ssion
from a coronal loop. The contours mark levels of equal brightness temper-

ature corresponding to 0.2, 0.4, .ool.0 ti_es the mzximum brightness tem-

perature of TB - 2 x 106 K. A schematic portrayal of the 6 cm e_ssion,

which comes from the legs of the magnetic loops, has been added together

with the underlying sunspots that are detected at optical wave!eugths.

Multiple-wavelength syuthesis observations _th the Very Large Array (VLA) have

been carried out at wavelengths % - 20,.6 and 2 cm (see Figure I). The radiation

at 20 c_ can originate at both the apex and legs of coronal loops, and sometimes

del_neates the hot, dense plasna detected at _-ray wavelengths. _'ne 20-cm coronal

loops have brightness temperatures TB - I x 106 to 4 x 106 K and extents of L = 109

to 1010.cm. Magnetic fleld strengths of H 145 G have been inferred

from cyclotron lines at the apex of the 20-cm loops. Bright, highly polarized 6-cm

cores often mark the legs of dipolar loops _-ith T_ - 2 x 106 to 5 x 106 _ and heights

h _ 109 cm above the underlying sunspots. Values' of H of -- 600 to 900 G are

inferred from the fact that these cores emit gyroradiation at the second or third

harmonic of the Eyrofrequency. The 2-cm emisslon has brightness temperatures of

T B = 105 K and often overlies sunspots at heights h_ 5 x i08 cm where H is = 105 G.
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The 20-cm coronal loops have been discussed by _elusamy and Kundu (1981), Lang•

Multiple-wavelength VIA obser-vattons at 2, 6 and 20 cm have been presented by Lang,
Wlllson and Gatzauskas (1983), Shevgaonkar and Kundu(1984), Kundu and Lane (1985)

and Kundu (1986 - this proceedings). Host recently, Gary and Rurford (1986)

have used ndcrovave spectroscopy during a solar eclipse to delineate the physical

conditions at a vartet_ of levels _r_thln the legs and apex of a coronal loop (see
Figure 2.

o.

Figure 2.
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Differenced OVRO Ctme profiles at four representative frequencies. R/ght

hand clrcular (EH) polarlzatlon is sho_n by the heavy lines• and left hand

(LH) polarlzaclon b_ the llght lines. _elow 3 GHz• _he active region appear. _

as a single board source. At higher frequencies, the region 51furcates Into

two main sources, becoming more localized to the sunspots as the observing

frequency increases. The sense of p0!arlzarion in the two spo_ sources is

consls_ent _Irh ETroresonance emission.
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W I A T I O R  H X ” I s H S  OF CORONAL uK)PS 

The quiescent, or non-flaring, radiation of coronal loops is  usua l ly  t h e m 1  in  
nature. The s o f t  X-ray r a d i a t i o n  16, fo r  example, a t t r i b u t e d  to t he  t h e m 1  
bremsstrahlung of hot d l l l o n - d e g r e e  electrons. 
wavelengths there are two  d i f f e r e n t  thermal mechanisms: t he  bremsstrahlung of the& 
e lec t ron6  accelerated In t he  electric f i e l d  of Ion6 and the gyroresonant r ad ia t ion  
of thermal e lec t rons  acce lera ted  by magnetic f i e l d s  can cont r ibu te  t o  the  einission, 
While the thermal bremsstrahlung emission 1s sens i t i ve  t o  the e l ec t ron  temperature 
and emission measure, gyroresonant emission is sens i t i ve  t o  the 1ocalT”magnetic f i e l d  
and e l ec t ron  temperature. 
measure of coronal IniSgnetiC f$eld strength. 
which of these mechanisms 16 responsible f o r  the emission from any given source at 
t hese  wavelengths. 

Eouever, at  centimeter 

It IS t h i s  gyroresonant r ad ia t ion  which provides a eens i t i vc  
Thus, it  I 6  Important t o  d i s t ingu i sh  

Strong evidence for thermal gyroradiation at coronal l e v e l s  above sunspots has 
been provified by comparing the  soft X-ray and centimeter-wavelength r ad ia t ion  of 
a c t i v e  regions Kundu, Schmahl and Gerasslmenko (1980); P a l l a v i c i n i ,  Sakurai and 
Vaiana (1981); Schmahl et al. (1982)). 
t h e  apex of coronal loOp6, the X-ray radiation of ten  f a l l s  t o  undetectable l e v e l s  in 
t h e  l egs  of coronal loops above sunspots. 
been observed from both the  apex and the l egs  of coronal loops. At  other t i m e s  rad io  
emission has been detected from j u s t  the apex or  j u s t  the legs of the loops, depending 
on the wavelength and observing condirions. 

Although there  is in tense  X-ray emission from 

Y e t ,  in tense  rad io  r ad ia t ion  has sometimes 

The near equa l i ty  of the  rad io  brightness and e lec t ron  temperzrures ind ica t e s  
t h a t  the raZi0 enission from COYOnal loops i s  Usually thermal. 
d e n s i t i e s  in fer red  from the X-ray data above sunspots i nd ica t e  t h a t  therms1 
bremsstrahlung is  too weak t o  account for the in tense  radio rad ia t ion .  The exzra 
source of opacity has been a t t r i b u t e d  to gyroresonance absorprion at the second o r  
t h i r d  harmonic of the  gyrofrequency. 

Bur the low e lecr ron  

GY RORE SON AN 7 EM 1.5 510 tu 
I 

Figi;ie 3. k Westerbork Synthesis h d i o  Telescope spnthesis map of c i r c u l a r  
po la r i za t ion  at X = 6 cm overlaid on an Ha photograph obtained from the  

c i r c u l a r l y  polarized horseshoe s t ruc ture  t h a t  r i ngs  the  sunspot umbra i s  
due to gyroresonant emission i n  the curved mzgnetic f i e l d s  of the sunspot 
penumbra. 

. observatory at Athens. The contours a re  i n  s teps  of 1.5 x l o 5  K. The 
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Thermal gyroradia t ion  a t  coronal l e v e l s  above sunspots has  been a d d i t i o n a l l y  
confirmed by t h e  de t ec t ion  of c i r c u l a r l y  polarized ring-shaped o r  horseshoe 
s t r u c t u r e s  at 6 c m  wavelength [Alissandrakis and Kundu (1982); Lang and Willson 
(1982)J. 
t h e o m  of gyroradia t ion  i n  t h e  curved magnetic f i e l d s  above sunspot penumbrae 
(Gel’freikh and Lubyshev (1979)). There 1s no de tec tab le  c i r c u l a r  po la r i za t ion  above 
t h e  c e n t r a l  sunspot umbrae where t h e  magnetic f i e l d s  p r o j e c t  r a d i a l l y  upvard i n t o  thc 
ho t  coronal regions ( see  Figure 3) .  Depressions i n  t h e  r ad io  br ightness  temperature 
above sunspot umbrae have been a t t r i b u t e d  t o  cool mate r i a l  in t h e s e  regions [Strong, 
gdiisandraicis and Kundu(i984jj. 

The highly-polarized (up t o  100 percent) s t r u c t u r e s  w e r e  p rec ic ted  by t h e  

A t  t he  longer, 20 cm, wavelength, emission i s  de tec ted  so&imes from both t h e  
apex and the l e g s  of coronal loops  (Lang, Willson, Strong, and Smith, 1986, and see 
Figure 41, and sometimes from j u s t  the apex (Webb e t  al., 1986). In the  l a t t e r  case,  
t he  e lec t ron  d e n s i t i e s  and temperatures in fe r r ed  from t he  X-ray spectral l i n e s  indica 
t h a t  the plasma i s  o p t i c a l l y  t h i c k  at 20 cm, and hence t h a t  t h e  observed brightness 
temperature should be equal t o  t h e  electron temperature. 
brightness temperature 1 6  a f a c t o r  of 2 - 3 lower than t h e  local e l e c t r o n  temperature 
Brosius and Rolman (1986-this proceedings) and Holman (1986-this proceedings) explr 
t h i s  low br ightness  temperature i n  terms of a r e l a t i v e l y  cool, (105 K ex te rna l  plasmc 
around the  hot  2.5 x lo6 K loops. Such mater ia l  absorbs emissions primarily from the 
loop  footpoin ts ,  where the  o p t i c a l  depth along t he  l i n e  of s i g h t  l e  grea te s t .  
loops and the  e x t e r n a l  plasma a r e  separated by a t h i n  t r a n s i t i o n  zone. The emission 
measure d i s t r i b u t i o n s  f o r  such models have been ca lcu la ted ,  and have been found not 
only t o  agree w e l l  v i t h  r ecen t  observational emission measure curves f o r  s o l a r  active 
region loops, but also t o  r ise on both the cool and the  hot  s i d e  of the  emission 
measure minimum. Tn i s  i s  t h e  f i r s t  time t h a t  a t h e o r e r i c a l  emission measure curve f c  
a s ing le  ac t ive  region loop.bas been found t o  do t h i s  (cf. Antiochos and Noci, 1986). 

However, t h e  observed 

The 

n 

O E  i 
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Figure 4. A comparison of t h e  s o f t  X-ray (S.P:.H.-lef t) , H (SOO+kiddle) and 
20 c m  (V-LOA.-right) emission of an  ac t ive  region on t h e  same dey. The 
most i n t e n s e  s o f t  X-ray emission is w e l l  cor re la ted  v i t h  In t ense  20 cm 
and-H 
near t h e  sunspots where i t  i s  also intense,  
f i d u c i a l  marks on t h e  axes i s  60 a r r seconds .  

emission; bu t  t h e  20 CHI emission also extends ac ross  the  a reas  
The angular spacing betveen 

_ _  
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A1ternatlve radiation mechanisms may be required for intense radio emlsslon fro,

regions overlying weak photospheric _sgnetlc fields. Observations of these reg!ons

have been reported by AkRedov et at. (1986), Lsng (1986a-thls prodeedlngs), Lang and

W_lson (1986a-thls proceedings), Webb, Davis, Kundu and Velusa_y (1983), and _11son

and Lang(1986). A possible explanation, first studied In detail by Chluderl, Drago a
Melozzl (1984), Is the nonthermal synchrotron e_sslon of _Lldly relatlv_stlc

electrons; but some currently-unspeclfled mechanism must be accelerating .the

electrons. An equally plauslble explanation Is that currents amplify the _ag_etlc

f_eld _n the low solar corona _o strengths that are a factor of-ten larger than those

inferred from magnetograms of _he underlying photosphere. The_observed radio

e_sslon _ght then be attributed to the gyroradlatlon of thermal electrons at the

second and third harmonic of the gTrofrequency.

SPECIFYING THE COEONAL'I_AGNETIC FIELD "

Measurements of the spectrum, polarization and angular slze of active region

sources at centimeter wavelengths have been pioneered by Soviet astronomers using the

RATAN 600 [Radio Astronomy Telescope of the Academy of Sciences (Nauk)-see Akmedov

et el. (1986)], and further developed and extended using the frequency-agile

interferometer at the OVRO [ Owens Valley Radio Observatory-see Burford and Gary (198

thls procee_Ings)]. _y measurlng both the angular slze and the flux density at a

variety of wavelengths_ one can uniquely determine the brightness temperature spectr_

of _he sources. Circular polarization data can additionally be used to specify

the magnetic field strength. _urford and Gary (1986-thls proceedings) have used

thls technique of _dcrowave spectroscopy to measure the field distribution in the

lower corona above sunspots.

In fact, both the strength and structure of the coronal magnetic field can be

specified along the legs of coronal loops where gyroradia_lon dominates. _ne

observations indicate that the magnetic fields systematically diverge and decrease In

s_reng_h at higher helghts (longer waveleng:hs) above single sunspots [see Hurford

and Gary (1986) - this proceedings].

The magnetic field strength can also be inferred from individual cyclotron lines

when Eyroradia_ion dominates the e_Lssion. The ohservs_lons at a single _aveleng_h

refer to a predelermined height where the radia_lon frequency is at one of _he low

harmonics of the gyrofrequency. Multiple-frequency observe=ions provide

information at a fixed helght_ regardless of field streng=h.

Holman and Kundu (1985) and Holman (1986 - proceedings) have pointed out that

the emitting isyers might be spatially resolved when a _hin loop Is observed. The

magnetic field s_ren_'_h _thin each layer can then be inferred from the observing

_aveleng_h and _he relevan_ harmonic. However, the cyclotron lines_my overlap

when _he loop is _hlck or when a _hln loop Is ohse1"ved along Its legs.

ORdiNAL PAGE i$
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The spectrum of an Ind_vldual cyclotron llne may also be obtained when observing

at several wavelengths. For example t the spectra of individual cyclotron lines have

been observed at wavelengths near 20 cm when the apex of a coronal loop is resolved

[_illson (1985), Lang (1986a-thls proceedings), Lang, _illson, Strong and Smith

(1986)]- This Is because the magnetic field strength is relatively constant near the

loop apex; the cyclotron lines vould amrge into a contlnuu_ along the loop legs where

the magnetic field strength decreases unifor_ly with height. Neutral current sheets

might also play a role, leading co intense radio emission from a thin layer near the

loop apex. _oth a uniform field and a steep temperature gradlqnt in the uniform

region are probably required to detect the cyclotron lines. 1_.any event observation

of individual cyclotron lines indicate magnetic field strengths of H - 145 = 5 C

at the apex of some coronal loops.

Solar bursts mlght als0 be used_o Infer the strength and confLguratlon of

coronal magnetic fields, t_berts, Edwin and Benz (1984) and Roberts (1984, 1986 -

proceedings) have shown that bursts can impulsively generate magneto-acoustic

oscillations in a coronal loop. These oscillations may be observed as quasi-periodic

radio variations whose onset, duration and periodicity can be used to infer the

heightt size and magnetic field strength of the e_Ltting region.

THE CORONAE OF _ STAES

Nearby maln-sequence stars of late spectral type exhibit qulescent, or non-
flaring, X-ray emission whose absolute lumlnoslty may be as much as i00 ti_es that of

the Sun [Vaiana et al. (1981)]. This suggests that these stars have hot stellar

coronae with large-scale coronal loops and strong magnetic fields. The solar analogy

suggests that these coronae mlght also he detected at radio _avelengrhs.

Nearby dwarf M flare stars do, in fact, exhibit slowly varying radio emission a=

6 and 20 cmwavelength that is analogous to that of solar active regions. However,

the X-ray observations rule out detectable thermal bremsstrahlung at radio

wavelengths; the temperatures and emission measures inferred from the X-ray data

indicate that the radio bremsstrahlung would be at least two orders of magnitude

below detection thresholds. Moreover, therm-=l gyroradia_ion is an unlikely source of

the intense 20 c.m radiation from some of these stars; implausibly large coronal loops

would have to be up to i0 rimes larger than the star with magnetic field strengths

larger than 100 G a= these remote distances. The most likely source of zhis slowly

varying radiation in M-dwarf stars is Eyrosynchrotron radiation from nonthermal

electrons (Rolman, 1986; Lang and Willson, 1986b).

_n other words, the fact that we detect radio emission from these stars means

tha_ something unusual is happening on them. As an example, radio bursts from _he

dwarf M, stars have been aztributed to coherent emission mechanisns like elec=ro_-

cyclotron masers or coherent plasma radiation [Melrose and Dulk (1982); Dulk (1985)].

Quasi-periodic and individual spikes have been detected from the dwarf M suar AD

Leonis at 20 cmwavelength [Lang et al. (1983), Lang and _i!Isou (1986a), Lang

(1986a)-this pr0ceedings)]. These spikes are up to 100Z circularly polarized with

rise _imes less than 5 m/lliseconds. The rapid rise rime indicates that the

emitter's size is less than 0.005 of the star's radius, and that a symmetric emitter

has a brightness temperature in excess of 1016 K. Such a high brightness temperature

requires a coherent radiation mechanism. Similar high brightness temperature spikes
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have been observed during solar flares. Unlike solar flares, however, the underlying
nonsplky emission from the AD Leonis flare is probably also coherent [Bolman,
Bookbinder and Colub (1985)].

Coherent emission is also suggested by the narrow-band, slowly varying, 20-cm
emission from the dwarf M star YZ Canls Minorls [Lane and Willson (1986)], as well as

narrow-band 20 cm flares from the red dwarf stars AD Leo and UV Ceil [_hlte, Kundu

and Jackson (1986)]o The narrow-band structure cannot be explained by contlnmm

emission processes such as thermal bremsstrahlung, thermal gyroradlstlon, or

nonther_al gyrosynchrotron radiation. Coherent radiation processes seem to be

required. .

If the radiation is emitted by an electron-cyclotron maser at the second
harmonic of the Eyrofrequency, then the magnetic field strength is H - 250 C,

and constraints on the plasma frequency imply an electron density of Ne = 6 x 109

............. _-3._Coherent plasma radiation at th_ f irst-or, second_harmonic of-$he plasma ....

freguency respectively require Ne - 2 x I0 I0 c_-3 and B << 500 G or Ee = 6 x l09

cm-3 and H << 250 C. Thus, the coherent burst mechanisms suggest that the coronae of

dwarf M stars have physical parameters similar to those of solar active regions.

FUTURE PROSPECTS FOR CORONAL DIAGNOSTICS

Probable observations of coherent radiation processes on nearby stars are

stimulating further searches for coherent signatures in the Sun's radio radiation.

In fact, narrow--band structure has been observed in a solar burst [Lane and Willson

(1984): Lan E (1986b)], and rapid spikes during some solar bursts have been Interpretec

in terms of electron-cyclotron masers [Rolman, Eichler and Kundu (1980); Holman (1983_

Future observations with high resolution in tlme and frequency st the VLA, O_q_0 and

Nancay _,ill help determine the role that coherent radiation processes Dlsy in solar

active regions.

The next decade will also include detailed comparisons of radio and _-rey

observations wi_h model coronal loops that include bo_h therm_l bremsstrahlun E and

thermal Eyroradiatlon. Coronal magnetic fields may be directly inferred from

observations and models in which the expected radio emission is computed as a

function of wavelength, polarization and vlewing angle. A comparison of the observed

radiation _-Ith theoretical expectations will determine magnetic field strengths,

electron densities and electron temperatures.

The evolution of coronal loops has strong future poten:i_l. Of special interest

are the preheating and magnetic changes that _rigger solar bu=sts [see Eundu and Lan_

(1985) for a review]. Emerging coronal loops and the magnetic interaction of

existing coronal loops will be particularly interesting topics.

F_ure studiesof the evolution of the three-dimensional magnetic and plasma

structure of coronal loops will lead to valuable new insights to the nature of solar

active regions and eruptions on the Sun and nearby stars. Such insights can only be

fully realized by the development of a solar-stellar svnthesls radiotelescope.

Such an instrument would be dedicated to solar and stellar observations with high

angular, temporal and frequency resolution.

6
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INTRODUCTION

°.

The Very Large Array (VLA) has been used to observe solar microwave sources

with second-of-arc angular resolution. Both the quiescent, or non-flaring,

microwave sources and the flaring ones are usually resolved. They are often

associated with the apex and/or legs of the ubiquitous coronal loops, which

heretofore have been observable only with X-ray telescopes sent above the

atmosphere. Multiple-wavelength VLA observations can specify the strength,

evolution and structure of the magnetic fields in coronal loops, while also

providing constraints on the electron density and electron temperature of the

plasma trapped within the coronal loops.

VLA observations are providing new insights to the preburst heating and magne-

tic interaction that precede eruptions from solar active regions [Lang and Willson,

(1983, 1984)]; but these interesting studies are not discussed here [see Mundu and

Lang (1985) for a review]. We instead summarize our current understanding

of the quiescent, or non-flaring, microwave emission from solar active regions.

The next section briefly reviews the thermal radiation mechanisms that account for

most of the quiescent emission, while also pointing out that current-amplified mag-

net_ic fields or non-thermal radiation may be required in some instances. This is

followed by a discussion of the 20 cm radiation of coronal loops and the thermal

cyclotron lines that accurately specify their magnetic field strength. The 20 cm

and X-ray emission of the coronal plasma are then compared. We next discuss the

coronae of nearby stars, where coherent radiation processes seem to prevail, and

then conclude our summary with promising research opportunities foK the future.

THERMAL RADIATION, CURRENTS AND NON-THERMAL RADIATION

The quiescent microwave m, ission of solar active regions has been attributed

• to the thermal radiation of hot electrons trapped within the strong magnetic fields

of coronal loops. The microwave brightness temperature is then on the order of the

million-degree electron temperature, and either thermal bremsstrahlung or thermal

gyroresonant radiation dominate the emission. Bremsstrahlung, or braking

radiation, is emitted when the thermal electrons are accelerated in the electric

fields of ions and gyroresonant radiation is emitted when the thermal electrons are

accelerated by magnetic fields.

Strong evidence for gyroresonant radiation at coronal levels above sunspots

was provided by a comparison of microwave, EUV and X-ray observations

[Kundu, Schmahl and Gerassimenko (1980); Pallavicini, Sakurai and Vaiana

(1981)]. -The near equality of the microwave brightness and electron temperatures

indicated that the microwave emission was thermal, but the absence of detectable

X-ray radiation above sunspots indicated a relatively low electron density there.

This meant that the high microwave brightness temperature above sunspots could

not be due to bremsstrahlung, but it could be explained by thermal gyroresonant

radiation at the second or third harmonic of the gyrofrequency.
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Thermal gyroradiation at coronal levels above sunspots was fully confirmed by

_A _A_, _f _4*-r-11]_r]y n_-_1;_ri_e_ rlna--qhan_ nP hnT_eqhoe _tructur_

[Allisandrakis and Kundu (1982); Lan 9 and Willson (1982)] that were predicted

using the theory of gyroresonant radiation in the curved magnetic fields above

individual sunspots [Gel'freikh and Lubyshev(1979]. These structures were observed

at 6 cm wavelength where circular polarizations as high as 100% were detected.

Bright sunspot-associated sources observed at 2 to 6 centimeters wavelength are now

widely believed to be due to the gyroradiation of million-degree electrons

spiralling about strong magnetic fields above sunspots. .

But there is another class of compact, bright microwave sources in this

wavelength range that are not associated with sunspots. They occur above regions

of apparently-weak photospheric magnetic fields. For instance observations at 6 cm
wavelength revealed sources with coronal brightness temperaKures T B • 10 K in

regions away from sunspots [Schmahl et al. (1982); Webb, Davis, Kundu and Velusamy

(1983) ]. Force-free (potential) magnetic field extrapolations from the known

photospheric values indicate that the magnetic field in the low solar corona is

too weak _o account for the observed emission by gyroradiation.

The situation is even _rse at shorter wavelengths where stronger magnetic

fields are required to produce gyroradiation at the first few harmonies of the

gyrofrequency. (Higher harmonics produce insufficient optical depth to account

for the high brightness temperatures.) Lang and Willson (1986a-this proceedings)

and Willson and Lang (1986) report the presence of compact, bright 2-cm sources

that require magnetic field strengths o_ H- 2,000 G in the low solar corona at

regions away from sunspots if they are attributed to gyroresonance radiation.

Bright microwave sources in regions of apparently-weak photospheric fields

can be explained by two different hypotheses. First, the emission could be thermal

gyroradiation at the second or third harmonic of the gyrofrequency in strong

magnetic fields. Currents might amplify the magnetic field in the low corona to

values greater than those expected from extrapolations from the photosphere.

Alternatively the photospherlc magnetograms could be misleading, and strong

magnetic fields could exist in isolated regions away from sunspots. Secondly, the

emission could be nonthermal radiation in weak magnetic fields. Nonthermal

synchrotron radiation from midly relativistic electrons is one possibility, but

some as yet unspecified mechanism must be continuously accelerating the electrons

[Akhmedov et al. (1986), Chiuderi-Drago and Melozzi (1984); Willson and Lang

•(1986) ].

Figure I provides the radiation spectra for the three types of sources usually

detected at short centimeter wavelengths [see Akmedov et al. (1986) for greater

details]. The most common type of source is the sunspot-associated component

(A and C) that is attributed to thermal gyroresonance radiation in the legs of

coronal loops that are connected to the underlying sunspots. Source D is a

filament-associated component located above a magnetic neutral line in regions of

apparently-weak magnetic field. Yet, this source has a steep radiation spectrum

and high brightness temperature of T B ) 7 x 106 L It may be attributed to non-

thermal radiation or to thermal gyroradiation in current-amplified magnetic

fields. "Then there is the filament-associated source B _hat _-As the flat

spectrum of optically-thin thermal bremsstrahlung. Electron densities

N e - 109 to i0 I0 cm -3 are consistent with this interpretation, suggesting that

in this case we are detecting the same thermal plasma that is observed at

X-ray wavelengths from coronal loops. But. this plasma is more commonly detected

at the longer radio wavelength of 20 centimeters.
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Figure I. The radiation spectra of four sources associated with an active

region. The steep spectrum of the filament-associated source D is

attributed to the gryrosynchrotron radiation of mildly relativistic

electrons whereas the flat spectrum of the source B is attributed to

thermal bremsstrahlung. The sunspot-associated sources A and C are

attributed to gyroresonance emission in the legs of coronal loops.

CORONAL LOOPS AT 20 CM WAVELENGTH AND THERMAL CYCLOTRON LINES

Radiation from a post-flare loop at 20 centimeters wavelength was reported by

Velusamy and Kundu (1981); but there is a much more extensive literature regarding

the quiescent 20-cm radiation of coronal loops [Lang, Willson and Rayrole (1982);

Lang, Willson and Gaizauskas (1983); McConnell and Kundu (1983); Shevga0nkar and

Kundu (1984); Kundu and Lang (1985); _/ndu (1986 - this proceedings); Lang (1986 -

•this proceedings)]. The radiation at _his longer wavelength often comes from the

hot, dense plasma trapped within the coronal loop (see Figure 2 for a typical

example). The 20-cm coronal loops have peak brightness temperatures of 1 x 106 to

4 x 106 K and extents of about I0 I0 cm. Their radio emission can be attributed

to thermal bremsstrahlung or thermal gyroresonant radiation, or both.

Of special interest is the recent detection of thermal cyclotron lines near

the apex of coronal loops at wavelengths near 20 centimeters [see Figure 3 and

Willson (1985) for greater de_ails]. These cyclotron lines are emitted at

harmonics of the gyrofrequency, with a wavelength that depends only on the harmonic

number and the magnetic field surength. However, because the magnetic field in the

legs of coronal loops decrease _unifo_ly wi_h height, the Lndi%_dual clc!otron

lines at short wavelengths will usually merge into a smooth continuum.
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Figure 2. A typical radio wavelength (20 cm) V.L.A. map of the hot, million-

degree plasma trapped in a coronal loop. The angular scale between

fiducial marks on the axes is 60 arc-seconds.
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At 20 centimeters wavelength we can observe the apex of coronal loops where

the magnetic field is nearly constant and the spectrum of individual cyclotron

lines can be resolved. This will be particularly true if currents or some other

process confine the intense emission to a thin, hot layer within the loop apex.
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Figure 3.-- VIA data at ten closely-space_ rrequencles n_a: _D _ _.v _, :..ow-

ing thermal cyclotron line spectra from active region AR 4398 on success-

ive days, together with optically-thick thermal bremsstrahlung spectra

from active region AR 4399 on the same days.
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Individual cyclotron lin_ from __R 4398 _r_ shown in Fi_ 3 roger_her with

the flat spectrum of the nearby active region AR 4399. The flat spectrum of AR

4399 is attributed to thermal bremsstrahlung, whereas the spectrum of AR 4398 can

be explained by cyclotron line emission from a narrow layer of width AL - 108 cm,

electron density N e - l09 cm -3 and a relatively high electron temperature

T e - 4 x 106 K (solid line). Here the harmonic number n - 4 and the magnetic field

strength H - 145 G. A key aspect of this discovery is the extraordinary precision

in measuring the magnetic field strength; a change of only AM - 20 G _hifts the

central frequency of the line by 170 MHz.

COMPARISON OF THE 20 CM AND X-RAY _41SSION

As previously mentioned, comparisons between the X-ray and short microwave

(3 to 6 cm) radiation from solar active regions provided evidence for a new source

of opacity at microwave wavelengths above sunspots. It has been attributed to

gyroresonance effects in the legs of coronal loops connecting with underlying

sunspots.. Recent comparisons of the 6 cm radiation from the apex of coronal loops

indicates that its brightness temperature is less than the electron temperature

measured at X-ray wavelengths; this has been explained by a cool (- l05 K) external

plasma [Holman (1986 -this proceedings); Webb, Holman, Davis and Kundu (1986)].

However, there have been no published comparisons of X-ray data with the 20 cm

emission of the coronal plasma. In some instances, there is radiation at 20

centimeters wavelength near sunspots where no X-ray radiation is detected. The

radio emission may be attributed to gyroresonant radiation of a low density plasma

in magnetic fields of strength H = 145 to 290 G (harmonic n - 4 to 2), [see Lang,

Willson, Strong and Smith (1986a) for greater details].

In other cases, the 20 centimeter radiation appears at the apex of coronal

loops, but with a slightly lower brightness temperature, T B - 1.4 to 1.7 x 106 K,

than the electron temperature, Te - 3.0 x l06 K, inferred from the X-ray

data. This may be explained by a low temperature plasma wi_h Te - 105 K

that lowers the effective brightness temperature of the radio bremsstrahlung

while not affecting the X-ray data that only detects the l06 K plasma

[see Holman (1986 - this proceedings); Lang (1986 - this proceedings); and

Lang, Willson, Strong and Smith (1986a) for greater details]. Because the line of

sight through the low temperature plasma is greatest along the legs of coronal

loops, it can reduce the size of the radio source below that of the X-ray emission.

That is, the low temperature plasma can, under the right circumstances, confine the

detectable radio radiation to the apex of coronal loops.

As illustrated in Figure 4, there are other instances in which the 20-cm

radiation and the soft X-ray emission have the same angular extent. In this case,

the maximum brightness temperature of the radio emission has the same value as the

electron temperature, Te - 3 x 106 K, inferred from the X-ray data. At first sight

it would seem that the 20-cm emission is the thermal bremsstrahlung of the X-ray

emitting plasma (electron density Ne - 2 x I0 I0 cm-3), but in this instance we

have also detected a cyclotron line. Preliminary modeling indicates a thin layer

of T e . 4 x I06 K with a magnetic field strength of H - 145 or 187 G (harmonic n -

4 or 3). The thermal electrons that give rise to the X-ray radiation therefore

also seem to produce strong gyroresonant radiation at 20 centimeters wavelength.
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Figure 4. A comparison of the 20 c m  emission (V.L.A-left), soft-X-ray 
t. (S.M.M.-middle) and Ha (SOON-right) emission of an ac t ive  region on the 
1 

f 

same day. The angular spacing between f i d u c i a l  marks on the axis is  
60 arc-seconds . 

4 

CORONAE OF NEARBY STARS 

Nearby dwarf M stars exhib i t  slowly-varying, quiescent microwave r ad ia t ion  and 
microwave bursts t h a t  have been detected with the  Very Large Array (VLA) and the 
Arecibo Observatory. Observations w i t h  high reso lu t ion  i n  frequency and t i m e  
provide s t rong  evidence f o r  coherent rad ia t ion  mechanisms i n  the coronae of these 
stars [Lang (198633) 1 . Such mechanisms provide s t r i n g e n t  cons t r a in t s  on the 
e l e c t r o n  'density and magnetic f i e l d  s t rength  i n  the stellar coronae. 

Narrow-band, slowly varying r ad ia t ion  has been detected from the dwarf M star 
YZ h n i s  Minoris when using the  VLA a t  wavelengths near 20 centimeters [Lang and 
Willson (1986b) I . White, IQlndu and Jackson (1986) subsequently repeated t h i s  
experiment, f ind ing  narrow-band bursts from the dwarf M stars AD Leonis and W 
C e t i .  The narrow-band s t ruc tu re  cannot be explained by continuum emission 
processes such as  thermal bremsstrahlung, t he rna l  gyroresonant r ad ia t ion  or 
nonthermal gyrosynchrotron radiation. 
rise t o  narrow-band-cyclotron lines-,  it requi res  an implausibly la rge  source that 
is  hundreds of t i m e s  l a rge r  than the star. The observations of narrow-band 
s t r u c t u r e  can apparently only be explained by coherent mechanisms l i k e  electron- 
cyclotron l i n e s  or coherent plasma radiation. 

Although gyroresonant r ad ia t ion  can give 

Independent evidence for coherent r ad ia t ion  mechanisms is  provided by 
high-time-resolution observations of the dwarf M star AD Leonis at the Arecibo 
Observatory [Lang, Bookbinder and Golub (19831, Lang and willson (1986~11. As 
i l l u s t r a t e d  i n  Figure 5,  quasi-periodic, highly polarized spikes are observed a t  20 
centimeters wavelength with rise t i m e s  of less than 5 milliseconds. An upper l i m i t  
t o  the l i n e a r  s i z e  of the spike emitting region is L < 1.5 x lo8 cm, the d i s t ance  

! 
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that light travels in 5 milliseconds. This size is only five hundredths of the

estimated radius of AD Leonis. Provided that the emitter is symmetric, it has

a brightness temperature greater than i016 K. Tne high degrees of circular

I A LCP °.

I I00 mJy

i i i J

18h l_t09 $ It0' ttl' zlZs "3s

UNIVERSAL TIME

Figure 5. The total power detected at a frequency of 1415 _z _i_--_) _ile---

tracking the dwarf M s_ar AD Leonis. The left-hand circularly polarized

(LCP) signal has been displayed with a 5 ms integration time. There are

five quasi-periodic spikes with a mean periodicity of Tp = 32 + 5 ms and

a total duration of T D = 150 ms. Each of these spikes had a rise time of

TK • 5 ms, leading to an upper limit to the linear size L • 1.5 x 108 cm

for the spike emitter. A symmetric source of this size would have a

brightness temperature of T B ) 1016 K, requiring a coherent radiation

mechanism.

polarization (up to 100%) indicate an intimate connection with the star's magnetic

field, and the high brightness temperatures suggest a coherent radiation mechanism

such as an electron-cyclotron maser or coherent plasma radiation.

The coherent process provides constraints on the electron density, Ne, and the

magnetic field strength, H, in the stellar ¢oronae [see Dulk (1985) for the

relevant formulae]. If the electron-cyclotron maser emits at the second harmonic

of the gyrofrequency, the longitudinal magnetic field strength H = 250 G and_

constraints on the plasma frequency imply an electron density of N e - 6 x 109

cm -3 . Coherent plasma radiation at the fir_ or second harmonic of the plasma

frequency r@spectively require N e - 2 x i0-- cm -3 and and H << 500 G or

N e - 6 x I0 _ cm -3 and H << 250 G.

PROMISING DIRECTIONS FOR THE FUTURE

Future VLA observations at 20 centimeters wavelength will continue to provide

diagnostic tools for the solar corona. Observations of thermal cyclotron lines

offer a promising method of accurately determining the coronal magnetic field

strength. Comparisons with soft X-ray spectral lines will help delineate the
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electron density and temperature, while also specifying the radiation mechanisms.

One promising approach that grew out of this conference involves simultaneous

observations with the VLA and the Owens Valley Radio Observatory (OVRO). The OVRO

will provide spectral information that is not obtainable with the VLA, whereas the

high angular resolution of the VLA will remove ambiguities in the OVRO data.

Future collaborations between the Tufts University group and the Observatoire de

Paris - Nancay Radio Heliograph will provide new perspectives to coherent radiation

processes on the Sun. The rapidly growing studies of the microwave radiation from

dwarf M and RS CVn stars will continue to provide new insights to physical

processes in stellar coronae. The full potential of these studies of the Sun and

nearby stars will only be realized by the development of a solar-stellar

synthesis radiotelescope. Such an instrument would be dedicated to solar and

stellar observations with high angular, temporal and frequency resolution.
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INTRODUCTION

The high angular resolution provided by the Very Large Array (VLA) has

pe_rmitted the spatial resolution of solar microwave sources and opened the way for

comparisons with observations of similar angular resolution at optical and X-ray

wavelengths. High-resolution VLA observations of solar active regions at

relatively 10ng wavelengths of 6 cm and 20 cm have, for example, led to the

discovery of the microwave counterpart of the ubiquitous coronal loo_s that had

previously only been observed by X-ray telescopes lofted above the Earth's

atmosphere. Tne microwave emission of the coronal loops is attributed to the

gyroresonant radiation and/or the bremsstrahlung of million-degree, thermal

electrons trapped within the loops by st_tong magnetic fields; observations of this

emission have provided valuable new insights into The nature of solar active

regions and eruptions from the Sun and nearby stars [ _/ndu and Lang (1985); Lang

(1986 a,b - this proceedings)].

In contrast, the short wavelength 2 cm emission of solar active regions is

poorly understood. Xn spite of numerous _F_A solar observations at 2 cm, There are

only two published results [Lang, Willson and Gaizauskas (1983); Shevqaonkar and

Kundu (1984)]. In both instances, compact (angular sizes e - 15"), highly

polarized (degrees of circular polarization Pc " 80% to 90%) sources were found in

regions of strong magnetic field (_trength H - 2,000 G) above sunspots. The

brightness temperatures of T B - i0- K were characteristic of the electron

temperature in The Transition region.

Subsequent examination of the compact 2 cm sources in aztive reuions indicated

that *-hey are variable over r/me scales of an hour or shorter. This probably

explains :_he paucity of _r_A results; synthesis maps averaged over ll or 12 hours

......... would not reveal several relatively-weak, T/me-variable sources.

To further complicate the matter, we have recently discovered compact, -

variable, highly-polarized 2 cm sources in regions of apparently-weak, photospheric

magnetic field [willson and Lang (1986)]. Our subsequent VLA observations have

confirmed the existence of compact, variable 2 cm sources that are not associated

--. act.re regions, b_t these sources had no detectable circular polarization. In

addition, both the unpolarized and polarized 2 cm sources were found to move

laterally across the solar surface with velocities V - 1 km s -I. In the next

section we present observations of These compact, variable, moving Sources. The

concluding discussion mentions possible radiation mechanisms and implications for

studies of the quiet Sun.
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• The VLA was used to observe the active region AR 4508 in the C configuration

between 1530 and 2330 UT om June 4, 1984. The position of this region was NO6 E57

at 1300 UT on this day. Follow-up observations were made between 1500 and 2300 UT

on January 17, 1986 in the D configuration. In r-his case, a region of bright plage

and relatively-weak magnetic fields (no sunspots) was observed; its position was

SI0 W62 at 1300 UT on This day. "_-

June 4.1984

),, 2 cm

V mops

I.%_) *6Z ? UT

.:-'.;..

C.

l? 3,2 - 1762 u'/

J

li4?" leOZ ILTT

i

/
@
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©

II,I121 -|I14 )

Figure _. VLA synthesis maps of left circularly polarized (solid contours) and

right circularly polarized (dashed contours) radiation at 2 cm wavelengr:-..

Here each box refers to the same area on the surface of the Sun, and the

fiducial marks on the axes are separated by I0 arc-seconds. The northerm

source (top)Varied over time scales of 30 minutes and moved laterally

across the solar surface in the northwest direction a velocity of .

-I km s -l. The southernmost source varied over a T/me scale of about 60

minutes, and moved laterally towards .the southwest at a velocity of"

-2 km s -l. Here the contours mark levels of equal brightness with an

outermost conUour of 6.1 x I04 and a contour interval of 3.1 X 104 K.
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As illustrated in Figure I, the 2 cm maps on June 4 showed two compact

(B - 5"), highly circularly polarized (Pc = 80 to 90%) sources that vary on time

scales of 30 to 60 minutes. The left circularly polarized _ource (solid contours)
varied in maximum brightness temperature from T B = 2.0 x I0- K to T B ( 0.5 x I0- K.

Here each box refers to the same area of the Sun, and the arrx)ws illustrate

systematic motion to the northwest with a total motion of abo_t 15" in three

hours. The left circularly polarized source was therefore movinq laterally across

the surface of the Sun with a v_locity of V - I km s -I. _ne right circularly

polarized source (dashed contours) apparently moved towards the southwest at about

twice this speed, but the motion is confused by the presence of more than one

source. ....

Comparisons %_h Mr. Wilson maqnetograms indicate that the %',,,o compact,

variable, moving sources _re located in regions of apprently-weak photospheric

magnetic field (H • 80 G), and that they did not overlie sunspots. The high

polarization of these sources is therefore somewhat enigmatic, for the polarization

of thermal radiation requires strong magnetic fields of H - 2,000 G. We will

return to this paradox in the discussion.
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Figure 2. VLA synthesis map of The total intensity of _he radiation at 2 cm

wavelength. Here each box refers to The same area on r_he surface of The

Sun, and the fiducial marks on The axes are %eparated by 60 arc-seconds.

The southern source (bottom) increased slowly in brightness over a seven

hour period while: moving laterally across the solar surface in the

southeast direction at a velocity of - I km s-t. The northern source

(top) varied over a time scale of 180 minutes, but showed no detectable

lateral motion. Here the contours mark levels of equal brightness with

an outermost contour of 5.2 x 104 K and a contour interval of 1.8 x 104 K.



Our confirming observations on January 17, 1986 revealed compact 2 cm sources

with angular sizes 8 - 25" and maximum brightness temperatures of T B - 2.0 x I05 K

These sources were observed in plage regions with apparently-weak photospheric

magnetic field and no sunspots, but in this case the compact sources had no

detectable circular polarization (Pc • 15%).
o.

As illustrated in Figure 2, the compact unpolarized sources either varied

substantially in intensity over time scales of hours (top sources) or slowly

increased in brightness over a seven hour period (bottom source). Here each box

.....refers to the same area on the surface of _t_leSun, and the arrows indicate a .....

lateral motion at a velocity of V- 1 km s- . Curiously, the relatively-unvarying

source exhibited this motion, but the variable one showed no detectable motion.

DISCUSSION

We have discovered previously-unobserved sources at 2 cm wavelength in regions

of apparently-weak photospheric magnetic field. The brightness temperatures of

T B - i0- K are characteristic of the transition region. The angular sizes are

B " 5" to 25", and they vary in intensity over time-scales of 30 minutes to more

than 180 minutes, We have observed at least two of these compact, variable 2-cm

sources within the 3' field of view every time we have observed the Sun;

extrapolating to the 30' - wide Sun, we would expect hundreds of Them on the

visible surface of the quiet Sun. The compact, variable sources can either be

highly circularly polarized (Pc " 90%) or they can exhibit no detectable circular

.. " . _ . polarization (Pc (15%) .................

The enigmatic presence of highly polarized sources in regions of apparently-

weak photospheric magnetic field may be explained by any one of Three hypothesis.

First, r_he photospheric field may have strengths of up to 2,000 G in compact

regions _hat are not readily detected by the photospheric magnetograms.

Alternatively, the magnetic field in the transition region or the low corona may

be amplified by currents to a strength above That in the underlying photosphere.

If either of these hypothesis is true, Then The high circular polarization of the

2 cm sources can be attributed to either thermal gyroradiation or the propagation

.. of thermal bremsstrahlung in the presence of a magnetic field of streng-_h H - 2,000

G. A third hypothesis, developed by Wil!son _nd Lang(!985), is Gnat _ne compact

2 cm sources are due to nonthermal gy.rosynchrotron radiation of mildly re!ativisui=

electrons in relatively weak magnetic fields of strength H - 50 G.

..... But _%at accounts for the variability and lateral motion, of both The Dolarized

and the un_olarized sources? The Source variability might be due to a variable

magnetic field that comes and goes within the ._ransition region and low solar

corona. Alternatively, The variations could be interpreted in terms of thermal

electron density variations related to heating changes or to non-_hermal electron ....

density variations resulting from a variable acceleration mechanism . The lateral

motion can be attributed to an upward expansion of dipolar loops; the 2-cm

observations detect the apparent lateral motion of t.he loop legs.

Finally, _ would like to point out certain resemblances between the compact,

variable 2-cm sources and other phenomena reported in this proceeding. These

sources are resolved (they are not points) with angular sizes comparable to those

of small erupting filaments [Martin {1986 - this proceedings)] and the 20 om

observations of so-called coronal bright points [Habbal (1986 - this _roceedings)].

The rime scale of r_he variations and the lateral motions of the 2-cm sources are
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comparable to those of the small erupting filaments. The brightness temperatures

of the 2-cm sources are the same as those of the 20-cm ones. Comparisons with

features seem at the He I, I 10830 transition are very misleading, for there are so

many of these features that the statistical significance of a correlation has to be

very low.
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ABSTRACT

@ery Large Array observations of a solar active region at 2 cm wavelength

have revealed a new class of compact, variable sources on the Sun. The

compact sources vary on two different time scales of I0 to 20 seconds and 30

to 60 minutes . They are small (angular size e = 5"), hot (brightness

temperatures TB = 0.5 to 3 x i05 K), and highly circularly polarized (degrees

of circular polarization Pc = 80 to 90%). This emission originates in regions

of low magnetic field strength H < 80 G. The high circular polarization must

nevertheless be associated with magnetic fields, and a plausible explanation

for the source variability is variations in the magnetic fields on the two

time scales. Alternatively, the variability might be attributed to a variable

non-thermal electron density, perhaps resulting from a variable acceleration

mechanism. The compact sources are attributed to gyrosynchrotron emission

from mildly relatlvisitlc electrons with a power law spectrum.



I. INTRODUCTION
°.

The radiation mechanisms of quiescent (non-flarlng) microwave emission

from solar active regions at 6 cm and 20 cm wavelength are now well

understood. This emission is attributed to the gyroresonant radiation and/or

the bremsstrahlung of thermal electrons at the legs or apex of coronal loops

(Lang, Willson, and Galzauskas 1983; Lang and Willson 1983; Shevgaonkar and

Kundu 1984; Kundu and Lang 1985). In contrast, the quiescent emission of

solar active regions at 2 cm wavelength is poorly understood.

There are only two published reports of 2 cm VLA observations of solar

active regions (Lang, Willson and Galzauskas 1983; Shevgaonkar and Kundu

1984). Both papers report the presence of several (2 to 6) compact (angular

sizes 0 < 15"), highly polarized (degrees of circular polarization Pc " 80% to
m

90%) sources at the feet of coronal loops and overlying sunspots. The

brightness temperatures (T B = 105 K) of these compact polarized sources

suggests an origin in the transition region, while the high polarization is

attributed to intense magnetic fields of strength _ _ 2,000 G.

The relationship of the compact, highly-polarlzed sources to the magnetic

field geometry is controversial. Shevgaonkar and Kundu (1984) report the

presence of two compact sources underlying larger 6 cm emission. This

suggested that coronal loops diverge as they rise toward their apex, and

contradicted loop models that assume a constant cross section (Rosner, Tucker

and Vaiana 1978). In contrast, Lang, Willson and Gaizauskas (1983) find at

least six compact 2 cm sources scattered over an area that is comparable to

that of the 6 cm emission. They also notice that the 2 cm sources are not
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found everywhere over sunspots, suggesting an origin in the low corona rather

than the transition region where uniformly strong magnetic fields are expected

above umbrae.
..

Previous VLA observations of compact, highly-polarized 2 cm sources were

used to make synthesis maps over intervals of ii to 12 hours. These maps

revealed long-lasting sources that overlie sunspots in regions of strong

magnetic field. Our recent VLA observations at 2 cm wavelength have been

used _o make snapshot synthesis maps for time intervals as short as I0

seconds. These maps indicate the presence of variable compact sources that vary

over intervals of about 20 seconds and about 30 minutes. The variable sources

originate in regions of low magnetic field strength H < 80 G, but they are

highly circularly polarized. These observations are discussed in greater

detail in Section II. The compact (e = 5"), highly circularly polarized

(Pc = 80-90%) sources have brightness temperatures TB = 0.5 to 3 x 105 K, and

they vary in brightness on two different time scales of i0 to 20 seconds and 30

to 60 minutes. In Section III we associate the high circular polarization

with magnetic fields. Since the sources appear above regions of low magnetic

field strength, the high circular polarization and high brightness temperatures

cannot be explained by thermal radiation mechanisms. Here we explain the

polarization and temperatures in terms of the non-thermal gyrosynchrotron

emission from mildly relativistic electrons. The source variability is

attributed to varying magnetic fields or a varying non-thermal electron

density.

II. OBSERVATIONS

The VLA was used to observe the active region AR 4508 in the C

configuration between 1530 and 2330 lit on June 4, 1984. The position of AR

4508 was NO6 E57 at 1300 UT on this day. Wavelengths of 2.1 cm and 20.7 cm
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were used for alternate 15 minute periods, followed by 5-minute observations

of the calibration source PKS 0528 + 134. In all cases, the bandwidth was

12.5 MHz. In the C configuration the synthesized beamwldths are = 1.2" and

1.7" at 2.1 and 20.7 era, respectively. The data were sampled evexy 10s and

were calibrated using the standard solar calibration procedures at the VLA.

These data were then used to make synthesis maps of both the total intensity,

I, and circular polarization , V, at each wavelength. These maps were finally

CLEANED to produce images having a dynamic range of about i0:i.

The synthesis maps of total intensity at both wavelengths are shown in

Figure I. The 20.7 cm map was made using the data taken during the entire 8 hour

observation period, whereas the 2 cm map refers to a shorter 15 minute

interval beginning at 1547 UT. The most intense 20 cm emission is contained

within an elongated looplike structure of " 2.5' in extent which has a peak

brightness temperature of 1.0 x 106 K. There was no detectable 20 cm circular

polarization to a limit of < 10%. A comparison with Kitt Peak and Mr. Wilson

magnetograms indicates that the extended 20 cm component lies along the

magnetic neutral line in the western vart of the active region. The weaker

component lies "30" to the east of a pair of sunspots.

In contrast, the 2 cm map shows two compact (e " 5"), highly circularly

polarized (Pc = 80-90%) sources that vary on time scales of 30 to 60 minutes

Figure 2). Comparisons with Mr. Wilson magnetograms indicate that the two

compact, variable sources appeared in regions of weak magnetic field with

strengths H < 80 G, and that they did not overlie sunspots. The left

circularly polarized sources (solid contours) varied in brightness

temperature from TB = 2.0 x 105 K to TB < 0.5 x 105 K, while also moving

systematically to the northwest with a total movement of 12" in three hours, or

at a rate of about 0.8 km s-I (I" = 725.3 km on the Sun). The right circulary
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polarized source (dashed contours) ranged between 3.0 and 1.0 x 105 K.

Figure 3 shows 30 s snapshot maps of additional 2 cm compact sources with

angular sizes 8 " 4" and peak brightness temperatures of TB ffi1.0 to 3.0 x 105 K.

These sources are denoted by A and B in Figure I. They also apveared in

regions of weak magnetic field (R < 80 G) and did not overlie sunspots.

An examination of los snapshot maps indicates that sources A and B had

respective lifetimes of I0 seconds and 20 seconds. The A source appeared

at aSout 165740 and was unpolarlzed, whereas the B source appeared at 173130

and had a dipolar structure. Source B suggests the emergence of a small

dipolar loop with a lifetime of 20 seconds and a temperature characteristic of the

transition region.

III. DISCUSSION

The high degree of circular polarization of the compact, transient 2 cm

sources is somewhat enigmatic. This polarization cannot be accounted for by

propagation effects (thermal bremsstrahlung) or gyroresonant absorption. The

compact, transient 2 cm sources are in regions of weak magnetic field ((H • 80 G)

and do not overlie sunspots. The circular polarization of these sources cannot

be explained by propagation effects of the thermal bremsstrahlung, for magnetic

fields of _ - 2,000 G are required. Although gyroresonant absorption might

account for the circular polarization, the weak magnetic field requires

a very high harmonic of the gyrofrequency. The optical depth due to gyroresonant

absorption is then negligibly small and the observed brightness temperatures

TB - 105 K cannot be accounted for by a plausible electron temperature.

(The electron temperatures would be much too high.)

Conventional thermal radiation mechanisms llke bremsstrahlung and

gyroresonant, or cyclotron, radiation cannot explain the high circular

polarization and high brightness temperature in the presence of weak photospheric
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magnetic fields. However, non-thermal gyrosynchrotron radiation might explain

the observations. This mechanism has been invoked to explain 6 cm sources of

high brightness temperature in regions of weak magnetic fields (Webb et al. 1983;

Chiuderl Drago and Melozzi 1984), as well as a filament-associa_-ed source with a

high brightness temperature and steep radiation spectrum (Akhmedov et al. 1985).

Simplified expressions for the gyrosynchr0tron emission from mildly

relativistic electrons with both a thermal (Maxwelllan) and non-thermal

(power-law) energy distribution have been given by Dulk and Marsh (1982). For

non-thermal electrons with a power-law energy distribution of index 6 , the degre

of circular polarization, Pc , of the radiation and the effective temperature,

Tell, of the radiating electrons are given by

Pc = 0.20 x 100.56101-93c°se-1.16 cos2e(_) -0-21-0.37 sine

vH

(1)

and

e

Tef f = 2.2 x 10910-0.316(sinO)-0-36-0-066(v)0-50+0-0856 (2)

where e is the angle between the llne of sight and the direction of the magnetic

field, the observing frequency is v and the gyrofrequency vH = 2.8 x 106 H HZ.

For an observing frequency of v = 15.0 x 109 Hz, and a magnetic field strength of

H = 50G, we have v/v H = 107.1, and for e = 20 ° to 40 ° we obtain:

Pc = 22% to 36%

and

Tel f = I.I x I0I0 K to 1.5 x I0I0 K

for an energy spectral index of 6 = 3.
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The high effective temperatures permit brightness temperatures TB - 105 K

under the optically thin conditions (optical depth T << I) that occur when one is

observing at such high harmonics, n, of the gyrofrequency. (For our case

v ffinv H . 2.8 x 106 nH - 15 x 109 Hz so that n - 107). In contrast, the

effective temperature of thermal electrons is equal to the kinetic temperature of

I05K to I06K, and the expected brightness temperatures are very much lower than

those observed. For non-thermal electrons of density Nnt above some cut-off

energy Eo, we have

"TB " _ Teff - HLNnt c2 x (qv) _ (3)

where F_ is assumed to be Eo ffi10 key - 1.6 x 10-8 ergs,

and

____ = 3.3 x 10"2410-0-528(sinS)-0-43+0.658(v_)l.22-0.908

HNnt vH

(4)

If the magnetic field strength H = 50 G and the dimension along the llne

of sight is L - 109 cm, then a non-thermal electron density of Nnt - 5 x 106 cm-3

and B - 20 ° and B = 20° 40 ° give

and

T - 8.6 x 10-6 to 3.0 x 10-5,

TB = 1.2 x 105 K to 3.3 x 105 K

These brightness temperatures are comparable to those observed.

The absence of non-thermal gyrosynchrotron radiation at 20 cm wavelength

can be explained by the large optical depth in the overlying corona. With an

electron temperature of Te - 106 K and an electron density of Ne - 5 x 109 cm -3,

the optical depth due to thermal bremsstrahlung at 20 cm is T - 20. In this

case, the non-thermal gyrosynchrotron radiation would be completely absorbed at
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20 cm. Because the optical depth scales as the square of the wavelength, the

corona would be optically thin at 2 cm wavelength.

Because the compact 2 cm sources are transient with lifetimes as short as
°.

i0 seconds, continual acceleration of the electrons is not required. The energy

loss by synchrotron radiation with a power-law electron energy distribution

has a half-life, T, for the total emitted radiation given by

T _ 10 8 seconds

H2

(s)

A magnetic field of strength th H = 50 G, gives T - 4 x 104 seconds or ~ii hours.

But how are the electrons initially accelerated? Splcer (1979) and Shoub (1983)

showed that large electric fields can be produced in the transition region as a

result of the steep temperature gradient there. One possibility is that the

electric fields become unstable and generate numerous non-thermal electrons.

Splcer's calculations indicate that the number density of non-thermal electrons

is Nnt - 5 x 106 cm -3 for a thermal electron density of Ne = 3 x i09 cm-3.

This is consistent with the number of nonthermal electrons required to account for

the compact, transient 2 cm sources.

But what causes the varlabillty_of the observed emission? According to

equation (3), the observed brightness temperature decreases with decreasing

magnetic field strength and decreasing non-thermal electron density. We have

observed an apparent emergence and disappearance of a dipolar magnetic field in

one case. A plausible explanation for the source variability is therefore

variations in the magnetic fields. Alternatively, the variability might be

attributed to a variable non-thermal electron density, perhaps resulting from an

variable acceleration mechanism.
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FIGURE LEGENDS

Fig. I. VLA synthesis maps of total intensity, I, at 20.7 cm for eight hours of
o.

data and 2.1 cm (box) for 15 minutes of data (also see Figure 2_. The points

marked A and B denote the positions of compact, variable 2 cm sources with life-

times of i0 to 20 seconds (see Figure 3). All of the compact 2 cm sources lle

in regions of weak magnetic fields and do not overlie sunspots. The contours

mark levels of equal brightness, and the fiduclal marks on the axes are separated

by I' at 20 cm and i0" at 2 cm. The outermost contour and contour intervals are

4.5 x 105 K and 1.5 x 105 K at 20 cm and 6.1 x I04 K and 3.1 x 104 K at 2 cm.

Fig. 2. VIA synthesis maps of left circularly polarized (solid contours) and

right circularly polarized (dashed contours) radiation at 2 cm wavelength. Each

map begins at the UT time indicated. The map beginning at 1525 UT is for only

2 minutes of data, those beginning at 1618 and 1732 UT covered a 20 minute

interval, and all of the other maps _ere for 15 minute intervals. The northern

(top) source varied over time scales of 30 minutes, the southernmost (bottom)

source had a lifetime of about 60 minutes, and the complex of sources Just above

the southernmost source lasted for about 30 minutes. Here the contours mark

levels of equal brightness with an outermost contour of 6.1 x 104 K and a contour

interval of 3.1 x 104 K. The flduclal marks on the axes are separated by i0".

Fig. 3. A series of 30 s snapshot maps of total intensity I (top) and circular

polarization V (bottom). The maps reveal the presence of compact sources at

165740 and 173130 I_, respectively denoted by A and B in Figure I. An examination

of lOs snapshot maps indicates that compact sources A and B had respective

lifetimes of I0 seconds and 20 seconds. Here the contour intervals mark levels
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of equal brightness temperture, and the fiduclal marks on the axes are separated

by I0". The outermost contour and the contour interval are 6.1 x 104 K and

3.1 x 104 K for the I maps and 1.5 x 104 K for the V maps. The solid and dashed

°

contours of the V maps respectively refer to positive and negat_e values of V.
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ABSTRACT

We compare hlgh-resolutlon images of the quiescent emission from two

solar active regions at 20 cm (VLA) and soft X-ray (S_4-XRP) wavelengths.

There are regions where the X-ray coronal loops are completely imaged at 20 cm

wavelength. In other regions, the X-ray radiation is detected wlt_out

detectable 20 cm radiation, and vice versa, The X-ray data were used to

infer average electron temperatures Te - 3 x 10 6 K and average electron densities

of N e - 2.5 x 1010 cm-3 for the X-ray emitting plasma in the two active regions.

Although the 20-cm brightness temperatures were always less than Te, suggesting

optically thin layers, both the thermal bremsstrahlung and the thermal gyro-

resonance radiation from the X-ray emitting plasma ought to be optically thick

at 20 cm wavelength. Unexpectedly thin loops of widths W = 4 x 107 cm are

obtained if the observed optical depths are attributed to the thermal bremsstrah-

lung of this plasma. The low brightness temperatures can be explained if a

higher, cooler plasma covers the hotter X-ray emitting plasma. Thermal gyro-

resonance radiation must account for the intense 20-cm radiation near and above

sunspots where no X-ray radiation is detected. We next discuss the potential of

additional 20-cm (VLA) and soft X-ray (SMM-XRP) comparisons.
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I. INTRODUCTION

High-resolution observations with X-ray telescopes lofted above the

atmosphere have transformed our understanding of the solar corona._'The corona

is now viewed as a highly inhomogeneous distribution of closed magnetic loops,

that are anchored in the Sun, and open magnetic fields that extend out into

interplanetary space [see Valana and Rosner (1978) for a review]. The hot,

dense p_asma that is trapped within coronal loops gives rise to intense X-ray

radiation, and observations of X-ray spectral lines can be used to infer the

electron temperature, electron density, and emission measure of this plasma.

The development of aperture synthesis telescopes llke the Very Large Array

(VIA) has permitted ground-based microwave observations of the solar corona

with angular resolutions that are comparable to those of X-ray telescopes in

space. The high-resolution microwave observations can uniquely specify the

strength and structure of the coronal magnetic field. VIA synthesis maps of

the total intensity, I, describe the two-dlmensional distribution of source

brightness, whereas synthesis maps of circular polarlzatlon, or Stokes

parameter V, describe the two-dlmenslonal structure of the longitudinal

magnetic field [see Kundu and Lang (1985) for a review].

The microwave brightness temperature, TB, of the quiescent, or non-flarlng,

corona is nearly equal to the coronal electron temperature, Te, with

TB = Te - 106 K. This suggests that the quiescent microwave emission is

thermal. However, there are two possible thermal radiation mechanisms. They

are thermal bremsstrahlung, or free-free emission, and thermal gyroresonance

radiation, or cyclotron emission. In contrast, the quiescent X-ray emission of

the solar corona is due solely to thermal bremsstrahlung.

In order to identify the dominant thermal radiation mechanism at microwave

wavelengths, one needs to know the electron temperature, the electron density

r'7-7



u_ L|LC

layer, the scale length of the magnetic field, and the angle between the llne

of sight and the magnetic field. Thermal gyroresonance will generally dominate

radiation at short centimeter wavelengths when the electron density is
..

relatively low and the magnetic field is strong. "-

Early evidence for thermal gyroresonance radiation at coronal levels above

sunspots was provided by comparing the soft X-ray and short centlmeter-wavelength

radiation of active regions (Kundu, Schmahl and Gerasslmenko 1980; Pallavlcinl,

Sakuraland Valana 1981). Bright microwave radiation was found in the strong

magnetic fields above sunspots, but the X-ray observations indicated a relatively

low electron density in these regions. This meant that the high microwave

brightness temperatures above sunspots could not be due to thermal bremsstrah-

lung, but it could be explained by thermal gyroresonant radiation at the second

or third harmonic of the gyrofrequency.

These early Iow-resolutlon comparisons were fully confirmed when high-

resolutlon synthesis maps at 6 cm wavelength were compared with simultaneous

soft X-ray images obtained with the X-ray Polychromator (XRP) aboard the Solar

Maximum Mission (SMM) satelllte (Chluderl-Vrago et al. 1982; Schmahl et al. 1982;

Shlbasaki et al. 1983; Strong, Allssandrakls and Kundu 1984). Soft X-ray spectral

lines were used to determine the electron temperature and electron density of the

X-ray emitting plasma that coincided wlth the 6 cm sunspot-assoclated sources.

These parameters were then used to compute the bremsstrahlung brightness

temperature at 6 cm wavelength. Because the computed value was much less than the

observed brightness temperature, addltlonal 6 cm opacity due to gyroresonance

absorption above sunspots was required.

Thermal gyroresonance radiation at 6 cm wavelength in coronal regions above

sunspots was addltlonally confirmed by the detection of clrcularly polarized
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rlng-shaped or horseshoe structures (A11ssandrakls and Kundu 1982; Lang and

Wlllson 1982). The hlghly-polarlzed (up to i00 percent) structures were

predicted by the theory of cyclotron radiation in the curved magnetic fields above

sunspots (Gel'frelkh and Lubyshev 1979). Depressions in the 6 cm b_ghtness

temperature above sunspot umbrae have been attributed to cool material In these

regions (Strong, Allssandrakls and Kundu 1984).

But what about the microwave counterpart of the intense X-ray sources?

The brightest 6 cm sources are not usually associated wlth the brightest X-ray

sources," and the detailed correspondence between the radiation at the two wave-

lengths is poor (Schmahl et al. 1982; Nebb et al. 1983). But this result is

not terribly surprising. It would be expected if the dominant radiation mechanisms

are different in the two wavelength domains. Thermal bremsstrahlung is often too

optically thln to be detected at 6 cm wavelength where gyroresonant radiation

dominates. Different structures are observed at the two wavelengths because 6 cm

gyroresonance absorption occurs In the strong magnetic fields above sunspots while

the X-ray emission originates in coronal loops that stretch between sunspots of

opposite magnetic polarity.

Yet, the hot temperatures, slow evolution and long lifetime of X-ray coronal

loops make them ideal candidates for aperture synthesis techniques. Of course,

low-lylng loops have occaslonally been detected at 6 cm wavelength (Strong,

Alltsandrakis and Kundu 1984, Nebb et al. 1986)_ but radiation at this wavelength

originates at relatively low heights and it is usually dominated by gyroresonance

absorption. Higher levels are observed at 20 cm wavelength where the thermal

bremsstrahlung of coronal loops can become optically thick. In fact, when VLA

observations were extended to the longer 20 cm wavelength, quiescent, or non-

flaring, loop-like coronal features were discovered (Lang, Wtllson and Rayrole 1982).

The 20-cm coronal loops strongly resemble their X-ray counterparts (Lang and

Wtllson 1983, 1984). They have million-degree temperatures and stretch across
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regions of opposite magnetic polarlty in the underlylng photosphere. The size and

shape of the loops observed at 20 cm wavelength are also slmilar to those of arcades

of X-ray coronal loops, with linear extents L - 109 to 1010 cm. In addition, ' the

..

electron temperature and electron density inferred from X-ray obse_-vatlons of other

loops are consistent with the idea that the 20-cm coronal loops are due to thermal

radiation from the X-ray emitting plasmao All of these slmilarltles suggest that the

microwave counterpart of X-ray coronal loops can be observed in VLA synthesis maps at

the longer 20 cm wavelength.

Numerous authors have now identified elongated, loop-llke 20-cm features with

coronal loops, but the exact radiation mechanism for the 20-cm emission remains

controverslal. A majority of authors attribute this radiation to the optlcally-thlck

thermal bremsstrahlung of a hot, dense plasma trapped within coronal magnetic loops

that connect with underlylng sunspots (Lang, Willson and Rayrole 1982; Vulk and Gary

1983; Lang, Willson and Galzauskas 1983; Lang and Willson 1983, 1984; Gary and

Hurford 1986; Holman 1986)° Others reason that optlcally-thlck thermal gyroresonance

radiation may dominate the 20 cm emission of coronal loops (McConne11 and Kundu 1983;

Shevgaonkar and Kundu 1984). Both radiation mechanisms could play a role, with

gyroresonance radiation becoming important at relatlvely high brightness

temperatures or relatlvely low electron densities.

One can distinguish between the two thermal radiation mechanisms for 20-cm loops

if the VLA synthesis maps are compared with simultaneous X-ray images. This has

only been done in two instances. Chluderi-Vrago et al. (1982) used X-ray spectral

llnes from the SHH-XRP to infer the electron temperature and emission measure of the

X-ray emitting plasma, concludlng that one 20-cm source is the optlcally-thln

bremsstrahlung of this plasmao The angular extent of the X-ray source was comparable

to that of the 20-cm one, but the observations at both wavelengths were of

relatlvely poor angular resolutlon. Another sunspot-assoclated 20-cm source had

to be attributed to gyroresonance radiations for there was no detectable X-ray
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radiation from this region. Webb et al. (1986) used X-ray data taken during a

recent rocket flight to conclude that one of several 20-cm features was due to

optically-thick thermal bremsstrahlung associated with X-ray coronal loops.

They noticed that the 20-cm radiation was concentrated at the tops of the X-ray

loops and attributed this apparent concentration to absorption in a cool

external plasma. However, such a concentration was not present in the data of

Chiuderi-Drago et al. (1982).

Webb et al. (1986) concluded that complete X-ray loops could not be imaged

at any single microwave wavelength, and that this conclusion differed from the

interpretations of Lang, Willson and Rayrole (1982) and Lang and Willson (1983,

1984). Webb et al. (1986) ignored the substantial indirect evidence of numerous

observers who have associated loop-like 20-cm features with coronal loops. Their

generalization was also based upon a comparison of a single seven-hour 20-cm map

with a single X-ray image made during a five-minute rocket flight. (As we have

previously discussed, comparisons of X-ray maps with 6 cm data are largely

Irrelevant for the 6 cm radiation is usually due to a different radiation process

in different parts of the active region.)

In this paper we present the first comparisons of high-resolution 20-cm

maps (VLA) with simultaneous high-resolution X-ray images (SMM-XRP). These

comparisons are given in §II. In one instance, all of the X-ray emitting plasma

was detected at 20 cm wavelength, and additional 20-cm emission was observed

near sunspots where no X-ray radiation was detected. However, the 20-cm •

radiation was concentrated at the apex of the more extensive X-ray coronal loops

of another active region. In §III we discuss the absorption and radiation

mechanisms for coronal loops at 20 cm wavelength. We next use X-ray measurements

of electron temperature and electron density to place constraints on these

mechanisms. The observed 20-cm features are then explained. Our results are
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summarized in §IV where we also discuss the potential of future 20-cm (VLA) and

soft X-ray (SHb_-XRP) comparisons.

°

If. OBSERVATIONS "--

Ne have used the Very Large Array (VLA) and the X-ray Polychromator (XRP)

aboard the Solar Naximum Nisslon (SNH) satellite to observe solar active regions

AR4508 and AR 4532 on 1984 June 4 and July 8, respectively. The VLA was in the

C configuration on June 4 and in the hybrid C-D configuration on July 8. In both

instances the slgnal wavelength was 20.7 cm (1446 NHz) and the bandwldths were

12.5 NHz. Active region AR 450B was observed with the VIA for an 8 hour period

between 1500 UT and 2300 UT on June 4; its position on the solar surface was

06 ° N and 57 ° E at 1300 UT on this day. Active reglon AR 4532 was observed for

a 4.5 hour period between 1800 UT and 2300 UT on July 8; its position on the

solar surface was 07 ° S and 18 ° E on this day. The Flat Crystal Spectrometer

(FCS) of the SNH-XRP observed six prominent soft X-ray llnes: OV Ill at 18.9 A,

Ne IX at 13.4 A, Hg XI at 9.2 A, Si XIII at 6.7 A, S XV at 5.0 A and Fe XXV at

1.9 A. The FCS observed AR 450B for a ? hour perod between ???? UT and ???? UT

on June 4, and it observed AR4532 for a ? hour period between ???? UT and ????

UT on July B.

The half-power beamwldth of the individual VIA antennae was ~ 30' at 20 cm

wavelength, and the synthesized maps constructed from up to 325 Interferometer

pairs had beamwidths of 12.6" x 15.5" in the C configuration and 12.6" x 36o0" in

the C-D configuration. The June 4 data were calibrated by 5 minute observations

of the calibrator source PKS 0528 + !34 every 35 minutes, while the July 8 data

were similarly callbrated with the source PKS 0742 + 103. The flux density of

PKS 0528 + 134 and PKS 0742 + 103 was 1.5 Jy and 3.3 Jy at 1446 HHz,

respectively. The calibrated data for the entire observing period were used

together with the standard CLEAN procedure to make synthesis maps of both the
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total intensity, I, and the circular polarization, or Stokes parameter V. No

solar bursts or flares were observed during these observations, and the synthesis

maps therefore refer to the quiescent, or non-flarlng, radio emlsslo.n. There Was

no detectable circular polarlzatlon (V/I < 15Z) for both active regions,

suggesting that they were both optically thick to the extraordinary and ordinary

modes of wave propagation at 20 cm wavelength°

The 14" colllmated field of view of the FCS was rastered over a 7' x 7'

field of'vlew on June 4 and over a 4' x 4' field of view on July 8; in each case

the plxel spacing was 9" x 9". X-ray images were obtained for each of the slx

spectral lines during the orbital day at a cadance of 410 s. All of the

avallable data for each spectral line were then summed and averaged during each

orbit to improve the statistical uncertainty on the count rate from each pixel.

Significant emission was only detected from the three softest channels - 0 VIII,

Ne IX and Hg XI. The peak formation temperatures for these lines are 3 x 106 K,

4 x 106 K and 7 x 106 K, respectively. The failure to detect emission in the

harder, more energetic channels indicates that the active regions were stable and

unperturbed by flaring activity during the periods of observation.

The XRP also produced a white-light image that showed the sunspots, making

it possible to align the X-ray images with the sunspots to an accuracy of 10".

The VLAmaps of the total intensity, I, at 20 cm wavelength were aligned with Ha

photographs of the same sunspots with a similar 10" accuracy. This enabled us to

compare the soft X-ray and 20-cm data with the same field of view and angular

scale.

As illustrated in Figure 1, the 20-cm radiation of AR 4508 is concentrated

in the central regions of a more extensive system of X-ray loops. In this
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instance, the 20-cm radiation was aligned along the magnetic neutral llne (see

Figure 2). There is a sharp drop in the intensity of the radio emission along

the edges of the magnetic neutral llne where there ought to be a sharp gradient

in the magnetic field strength. I"

However, all of the X-ray emitting plasma of AR 4532 was detected at 20-cm

wavelength, and additional 20-cm emission was observed near and above sunspots

where no X-ray radiation was detected. As illustrated in Figure 3, intense X-ray

radiation and intense 20-cm radiation were detected from coronal loops or arcades

of loops that are connected wlth underlylng sunspots. These loops were about 60"

across or about 5 x 109 cm in linear extent. Both X-ray and 20-cm radiation were

also emitted from regions of bright plage. In addition, Lang et al. (1986) have

presented simultaneous SHH-VLA data in which an entire system of X-ray loops was

completely imaged at 20 cm wavelength.

Thus, the same coronal loops are often detected at both 20-cm and X-ray

wavelengths, wlth extra information at 20 cm near and above sunspots. Of course,

the 20_cm coronal loops can also be limited to a smaller volume than their X-ray

counterparts, but our SHN-VLA comparisons and other VLAobservatlons suggest that

this is not usually the case. The clalm by Webb et al. (1986) that complete

X-ray loops may never be imaged at any microwave wavelength can no longer be

Justified. We will therefore now turn our attention to the absorption and

radiation mechanisms that account for the 20 cm-coronal loops.

Ill. DISCUSSION

Because the microwave brightness temperature, TB, of the quiescent coronal

loops is nearly equal to the electron temperature, Te, the quiescent radiation
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from 20-cm loops is most llkely thermal. The two possible thermal radiation

mechanisms at 20 cm wavelength are thermal bremsstrahlung, or free-free emission,

and thermal gyroresonance radiation, or cyclotron emission. In order to Identify

the dominant thermal radiation mechanism at 20 cm wavelength, we wl_i evaluate

the electron temperture, Te, and the electron density, me, using the X-ray

radiation that is attributed to thermal bremsstrahlung alone.

As previously mentioned, the active regions were so quiescent that they were

only detectable in the three softest X-ray channels ( 0 VIII, Ne IX and Mg XI).

Because the 0 Vlll to Ne IX llne intensity ratio is insensitive to temperature

variations over the range typical of solar active regions, the ratios of the

other two llnes (0 VIII to Mg XI and Ne IX to Mg XI) were used as temperature

diagnostics. The temperatures inferred from the two ratios were averaged to

obtain our estimate for the electron temperature.

An emission measure was inferred from the temperatures and the observed

X-ray fluxes. The electron density was then calculated using a volume of 3 x

1027 cm3, which equals the product of the FCS plxel area and a typlcal soft X-ray

scale height of 3 x 109 cm.

The mean electron temperatures, Te, and electron densities, me, for AR 4508

were determined for the areas marked A, B and C In Figure 4. These parameters

are given in Table 1 together with the maximum observed brightness temperature,

TB, at 20 cm wavelength and the optlcal depth T - TB/Te. The mean T e and Ne for

AR 4532 were similarly inferred for the areas marked A, B, C and D in Figure 5;

they are given in Table 5 together with the relevant TB and T.

The mean values for different areas were then combined to give average

values of Te - 3.4 ± 0°4 x 106 K and Ne - 2.5 ± 0.6 x 1010 cm -3 for AR 4508 and

Te - 3.2 ± 0.4 x 106 K and Ne - 2.4 ± 0.6 x 1010 cm -3 for AR 4532. Here the
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uncertainties correspond to the maximum possible deviation that reproduces the

flux in all the detected X-ray lines to within 1 standard deviation of the

observed values. These values of Te and Ne are typical values for.quiescent '

coronal loops in active regions.

Within the uncertainties, the observed loops were isothermal. They also all

had optical depths T < 1 (optically thin). We will therefore evaluate the loop

width or thickness, W, that would give rise to optically-thin thermal

bremssfrahlung at our observing frequency of _ - 1446 MHz (20.75 cm). According

to Lang (1980):

or

W m
102 zf_fv 2 Te 3 12

Ne'z in (4.7 x 10 IU Te/v )

W - 2.13 x 1020 Tf_f Te 3/2

NeZ In (32.5 Te)

cm,

(1)

where Tf_f is the optlcal depth for bremsstrahlung. The Ne and Te obtained from

the X-ray observations have been substituted into equation (I) to provide the

widths, W, given in Tables 1 and 2. The average value of W for both active

regions is W = 4 x 107 cm.

The 20 cm coronal loops are unexpectedly thin, for the inferred widths are

at least an order of magnitude less than the expected width of X-ray coronal

loops. To put It another way, typical X-ray scale heights of W ~ 3 x l09 cm

would produce optlcally-thlck thermal bremsstrahlung at 20 cm wavelength, and the

20-cm brightness temperatures would be higher than those observed. For a

plausible coronal loop thickness and the X-ray values of Ne and Te, equation (I)

would give zf-f > I and TB ~ Te.

11
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An appeal to the alternate gyroresonance emission mechanism will not help

resolve this paradox. If the optlcal depth Tg_ r for gyroresonance absorption is

less than unity, bremsstrahlung will dominate the radiation which should be

optically thick, and if Tg- r is greater than Tf-f the radiation wi_ still be

optically thick.

However, for completeness, we will evaluate Xg-r using the equation

(Zheleznyakov 1970)

n2n Ne 10-10 Te)n-lL H (I +- cosa) 2 sln2n-2 aTg-r - 0.052 (I.7 x

2n- -rn! -V (2)

where the magnetic scale length LH has typical values of LH ~ 1 x 109 cm, the

angle between the line of site and the direction of the magnetic field lines is

a, and our observing frequency v - 1446 NHz and the harmonic n is related to

v through the relation

v - 2.8 x 106 nH Hz, (3)

where the magnetic field strength is H. For typical values of H ~ 100 G at the

apex of coronal loops (Willson 1985), we have n - 4. Then, collecting terms in

equation (2), we have for a - 90":

_g-r" 3.1N e (1.7 x 10 -10 Te)3 for n - 4.

Our average X-ray values of Ne ~ 2.5 x I0 I0 cm-3 and Te ~ 3 x 106 K give Tg_ r

~ I0 for n = 4.

Thus, we expect both the thermal gyroresonance radiation and the thermal

bremsstrahlung to be optically thick for plausible loop widths and magnetic scale

12
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lengths, lq_is is consistent wlth the lack of any detectable circular

polarization at.20 cm wavelength. The observed brightness temperature, TB, at-20

cm wavelength should therefore be equal to the electron temperature with TB ffiTe,

but the values of T B are between two and five times smaller than Te. To resolve

this paradox, we call attention to an idea first proposed by Holman (1986).

In order to explain the restriction of one 20-cm loop to the apex of an

X-ray loop, Holman argued that cooler material with Te ~ 105 K exists either as a

sheath around the loops or as part of an external medium. The 20-cm radiation

emitted by the X-ray loops will be partly absorbed in the cooler, higher plasma,

thereby reducing its brightness temperature. The higher, cooler material would,

however, be invisible in X-rays because of its low temperature and relatively

small emission measure.

If the cool plasma is part of an external medium that is more extensive than

the X-ray loops, then we would expect the observed 20-cm loops to be co-spatial

with the X-ray ones, but with a lowered brightness temperature. This is what is

observed for AR 4532. When the cool plasma is part of a sheath around the X-ray

loops, then the line of sight through the low-temperature plasma will be greatest

at the loop edges and footpoints, and the observed 20-cm emission will be

concentrated at the apex of the X-ray coronal loops. This is what is observed

for AR 4508.

But what about the bright 20 cm radiation near and above sunspots? There is

no detectable X-ray radiation in these regions, and this can be attributed to a

low electron density, Ne. Because the optical depth for free-free absorption

scales with Ne2 , while that for gyroresonance absorption scales with Ne, the

low electron density favors gyroresonance absorption. The high magnetic field
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strength above sunspots also favors this process. We therefore attribute the

20-cm radlatlon near and above sunspots to thermal gyroresonance radiation.

°.

IV. SUHHARY __

The quiescent, or non-flarlng, X-ray radiation of solar active regions Is

attributed to thermal bremsstrahlung, but the quiescent microwave radiation may

be due to either thermal bremsstrahlung or thermal gyroresonant radiation. In

our Introduction we reviewed evldence for thermal gyroresonance radiation at 6 cm

wavelength in coronal regions above sunspots. Thls evidence includes comparisons

of 6 cm VLAmaps wlth simultaneous soft X-ray data, as well as the detection of

highly clrcularly-polarlzed horseshoe structures above sunspots at 6 cm

wavelength. Bright 6 cm sources are not expected to coincide with bright soft

X-ray sources because their different radiation mechanisms dominate different

parts of solar active regions.

Although the thermal bremsstrahlung of coronal loops Is usually optlcally

thln at 6 cm wavelength, it can become optlcally thick at the longer 20 cm

wavelength where loop-llke coronal structures are observed. These 20-cm coronal

loops stretch between regions of opposite magnetic polarlty in the underlying

photosphere, and the temperatures, sizes and shapes of the 20-cm coronal loops

resemble those of soft X-ray coronal loops.

In this paper we have compared hlgh-resolution 20-cmmaps (VLA) with

simultaneous hlgh-resolution X-ray images (SMM-XRP) of two active regions. The

X-ray coronal loops in AR 4532 were completely imaged at 20 cm wavelength, while

the 20-cm emission of AR 4508 was concentrated along the magnetic neutral llne

within more extended X-ray loops. The X-ray data were used to infer average
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electron temperatures, Te, and average electron densities, Ne, with Te - 3.2 ±

0.4 x 106 K and Ne - 2.5 ± 0.6 x I0 I0 cm -3 for AR 4532 and Te - 3.4

± 0.4 x 106 K and Ne - 2.4 ± 0.6 x I0I0 cm-3 for AR 4508.
.

The microwave brightness temperatures, TB, at 20 cm wavelength'were always

less than the average electron temperature, with optical depths • - Te/T B of 0.2

• T • 0.5. Unexpectedly thin loops of widths W - 4 x 107 cm are obtained if

these optical depths are attributed to the thermal bremsstrahlung of the X-ray

emlttln_ plasma. In factp the X-ray values of T e and N e indicate that both

thermal bremsstrahlung and thermal gyroresonance radiation ought to be optlcally

thick at 20 cm wavelength for plausible loop widths and magnetic scale heights.

Optically thick radiation is also consistent with the lack of detectable circular

polarization at 20 cm. Thermal gyroresonance radiation must account for the

intense 20-cm radiation near and above sunspots where no X-ray radiation is

detected.

The unexpectedly low values of TB can be explalned if the X-ray emitting

coronal loops lle beneath a higher, cooler plasma. The hot, dense plasma in the

X-ray coronal loops would emlt optically thick radlatlon at 20 cm wavelength, but

the brightness temperature of thls radiation would be reduced during subsequent

propagation through the cooler, absorbing plasma. The observations of AR4532

can be explalned if the cooler plasma extends across and beyond the X-ray loops,

while the AR 4508 results might be explained by a cool sheath around the X-ray

loops. Thls cooler materlalwould not be detected at X-ray wavelengths because

of its low temperature and relatlvely small emission measure.

The results given in this paper indicate that the structure and dominant

radiation mechanisms in the low corona are much more complex and Inhomogeneous
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than was previously thought. Systems of coronal loops within a slngle active

region apparently have different temperatures and different radiation mechanisms

that can only be detected by observing at both X-ray and 20 cm wavelength.

Future comparisons of high-resolutlon images at these two waveleng_s will lead

to detailed information about the plasma and magnetic structure of the low solar

corona. Physical parameters such as electron temperature, electron density and

magnetic fleld strength can be specified, and the detailed variation of these

parameters within the coronal atmosphere can be determined. Such information

will pr?vlde important constraints on theories and models of coronal loops as

well as general theories for the structure and heating of solar active regions.
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Table 1. The mean electron temperature, Te, mean electron density, Ne, maximum

brightness temperature, TB, at 20 cm wavelength, optical depth, T, and the

inferred loop width or thickness, W, for the regions marked A, B, and C in Figure

4 of AR4508. --

Region Te Ne TB T W
(°K) (cm-3) (°K) (cm)

A 3.8 x 106 2.4 x 1010 0.8 x 106 0.21 3 x 107

B , 3.4 x 106 2.4 x 1010 1.7 x 106 0.50 6 x 107

C 3.1 x 106 2.8 x 1010 1.0 x 106 0.32 3 x 107

Average 3.4 x 106 2.5 x 1010 1.2 x 106 0.34 4 x 107



!

Table 2. The mean electron temperature, Te, mean electron density, Ne, maximum

brightness temperature, TB, optical depth, T, and the inferred loop width or

thickness, W, for the regions marked A, B, C and D in Figure 5 of AR 4532.

Region Te Ne TB T W
(°z) (cm--3) (°z) (cm)

A

B

C

V

3.1 x 106 2.4 x 1010 1.3 x 106 0.42 5 x 107

3.4 x 106 2.7 x 1010 1.4 x 106 0.41 4 x 107

2.9 x 106 2.7 x 1010 0.6 x 106 0.21 2 x 107

3.4 x 106 1.6 x 1010 0.7 x 106 0.21 6 x 107

Average 3.2 x 106 2.4 x 1010 1.0 x 106 0.31 4 x 107
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FIGURE LEGENDS

Fig. I. A comparison of a 20 cm VLA synthesis map of AR 4508 with SMM-XRP images

in the O VIII (18.9 A) and ME Xl (9.2 A) llnes at soft X-ray wavele_th on June 4

1984. The fleld of view of all three images is the same, and the angular scale

can be inferred from the 60" spacing between flducial marks on the axes. The

contours of the 20 cm map mark levels of equal brightness temperature

corresponding to 0.4p 0.5, 0.6 ... 1.0 tlmes the maximum brightness temperature

of 1.7 x 106 K. The contours of the 0 VIII image correspond to ?7, 77 and 77

counts per second above a background level of ?7 counts per second with a maximum

signal of 77 counts per second. The contours of the Mg XI image slmilarly

correspond to ?7, ?? and ?7 counts per second above a background level of 77

counts per second and with a maximum slgnal of 77 counts per second.

Fig. 2. The 20 cm contours of equal brightness temperature (solld black lines)

are superposed on a Kitt Peak Natlonal Observatory (KPNO) magnetogram of AR 4508

on 1984 June 4. The radio emission is concentrated along the magnetic neutral

llne that separates regions of negative (black) and positive (white) magnetic

polarlty. Sharp magnetic fleld gradients may exist along the neutral line. The

KPNO magnetogramwas klndly provided by Jack Harvey of the National Solar

Observatory.

Fig. 3. A comparison of soft X-ray (SMM-XRP-Ieft), Ha (SOON-mlddle) and 20 cm

(VLA-rlght) images of AR 4532 on 1984 July 8. The fleld of view of all three

images is the same, and the angular scale can be inferred from the 120" spacing

between the flduclal marks on the axes. The contours of the 20 cm map mark

levels of equal brightness temperature corresponding 0.4, 0.5, 0.6 ... 1.0 times

the maximum brightness temperature of 1.4 x 106 K. The soft X-ray data were
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taken in the 0 VIII line (18.9 A) with contours corresponding to ??, ?? and ??

counts per second above a background level of ?? counts per second with a maximum

signal of ?? counts per second. Here the sunspots are denoted by small black

o.

dots wlth a circle around them. ._.

Flg. 4. A soft X-ray map of AR 4508 taken in the Mg XI llne (9.2 A) with

contours corresponding to ??, ?? and ?? counts per second. The ratio of the

0 VIII and Hg XI line intensities were used to determine the mean electron

temperatures in the regions mark A, B and C. These temperatures are given

together with estimates of the mean electron density, 20-cm brightness

temperature, optical depth and loop width in Table 1. There is no detectable

soft X-ray radiation in the vicinity of the sunspots marked E and F, but these

regions are associated with intense radiation at 20 cm wavelength (also see

Figure 3).

Flg. 5. A soft X-ray map of AR 4532 taken in the 0 VIII line (18.9 A) wlth

contours corresponding to ??, ?? and ?? counts per second. The ratio of the

0 VIII and Mg XI line intensities were used to determine the mean electron

temperature in the regions marked A, B, C and D. These temperatures are given

together with estimates of the mean electron density, 20-cm brightness

temperature, optical depth and loop width in Table 2.

-98-



* i a * i l

E
U

O
OJ

W00
O_

-- G._
tZ

* l I i I a

-99-

O .

K



-7 

L..-.--..... -- ...... .... . . . .  . .__--I._.._.__._ .... .................. I.. . . . . . . . . . .  

“ I  - 100- 
t 

i .  
i 

. .  

t 
I 



$- 

I. 

i 

I 

-101- 



o-

f

l • • • | •

I I I l I I

_102-



.

A

0

O]Z]]I

B

\F

C

D

E

<,- -103-



PHYSICAL PARAMETERS OF A SOLAR ACTIVE REGION

INFERRED FROM A

THERMAL CYCLOTRON LINE _h'D SOFT X-RAY SPECTRAL LINES

°.

Kenneth R. Lsng and Robert Y. Willson

Department of Physics and Astronomy

Tufts University

and

Kermit L* Smith and Kelth T. Strong

Lockheed Palo Alto Research Laboratory

Palo Alto, California

-104-



_r

ABSTRACT

We present simultaneous hlgh-resolutlon observations of coronal loops at

20 cm wavelength with the Very Large Array (VIA) and at soft X-ray wavelengths

with the X-ray Polychromator (XRP) aboard the Solar Maximum Mission (SMM)

satellite. The images at 20 cm and soft X-ray wavelengths have ne_ly identical

sizes and elllpsoidal shapes, with a linear extent, L, of L - 5 x 109 cm. Both the

20-cm and the X-ray emission stretch between and across regions of opposite

magnetic polarity in the underlying photosphere. Complete X-ray coronal loops

can therefore be imaged at 20 cm wavelength, and 20-cm VIA maps describe the

radio wayelength counterpart of X-ray coronal loops. X-ray spectral lines were

used to obtain values of electron temperature Te = 2.B5 ± 0.08 x 106 K and

electron density N e = l.B ± 0.3 x 1010 cm-3 averaged over the emitting area.

These parameters are used with plausible estimates for the loop thickness,

magnetic scale height and magnetic field strength to show that the plasma

is optically thick to both thermal bremsstrahlung and thermal gyroresonance

radiation at 20 cm wavelength. The absence of detectable circular polarization

is consistent with an optically thick plasma. The observed brightness

temperature T B - Te. The VLAmaps at i0 closely spaced frequencies between

1440 and 1720 MHz described the same coronal loops or arcades of loops. A plot

of the maximum brightness temperature of these loops as a function of observing

frequency exhibits a llne-llke feature with a central frequency of 1650 MHz and a

half-wldth of 80 MHz. This spectral feature is attributed to a thermal

cyclotron llne, and it indicates that the optical depth of thermal gyroresonance

radiation must be greater than that of thermal bremsstrahlung at these frequen-

cies. The X-ray values for Te and Ne are combined with plauslble values of

magnetic scale height and optical depth for gyroresonance absorption to show

that the harmonic, n, of the gyrofrequency is n - 4. The central frequency and

narrow width of the thermal cyclotron llne are combined with this harmonic to

show that the magnetic field strength, H, of the coronal loops is H = 147 ± 5 G.
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INTRODUCTION

Very Large Array (VLA) observations of solar active regions at 20-cm wave:
o.

length delineate loop-like features that are probably the radio wavelength

counterpart of the coronal loops seen at X-ray wavelengths. The 20-cm coronal

loops stretch.across regions of opposite magnetic polarity, and they exhibit

sizes, shapes and temperatures that are slmilar to those of X-ray coronal loops

(Lang, Willson and Rayrole 1980; Lang, Willson and Galzauskas 1983; Lang and

Willson 1983, 1984). Because the radio brightness temperatures are nearly equal

to the electron temperatures of coronal loops, the radio radiation is most likely

due to a thermal radiation mechanism.

The two possible thermal processes are thermal bremsstrahlung, or free-free

emission, and thermal gyroresonance radiation, or cyclotron emission. The :

electron temperatures and electron densities inferred from X-ray observations of

coronal loops are consistent with optically thick thermal bremsstrahlung at 20-cm

wavelength (Lang, Willson and Rayrole 1980), but these parameters can also be

combined wlth plausible estimates of the coronal magnetic field strength to show

that thermal gyroresonance radiation can also become optically thick at this

wavelength (McConnell and Kundu 1983; Shevgaonkar and Kundu 1985).

Nhen thermal gyroresonance dominates, one might detect individual cyclotron

lines as narrow-band enhancements in the radio-wavelength spectra of coronal

loops. Theoretlclans have predicted that such thermal cyclotron lines might be

observed if the radiation is emitted from relatively thin layers in the corona

where the magnetic field is nearly constant (Syrovatskli and Kuznetsov 1980;

Zheleznyakov and Zlotnlk 1980; Kuznetsov and Syrovotskll 1981). The spectrum

of a cyclotron llne was subsequently observed at wavelengths near 20 cm when the

apex of a coronal loop was resolved (Willson 1985). Observations of these llnes

provide an unusually accurate method of specifying the coronal magnetic field
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strength. The central frequency of the llne must be a harmonic of the gyrofre-

quency, and the narrow llne width provides tight constraints on that frequency

and the relevant magnetic field strength. --_

Although there have been rapid recent developments in the observations of

20-cm coronal loops, there have been relatively few comparisons of simultaneous

20-cm and soft X-ray observations. Such comparisons can help specify the

dominant 20-cm radiation mechanism, while also establishing the physical parameters

of the coronal plasma. X-ray spectral lines can, for example, be used to infer

the electron temperature and electron density while the radio observations can

uniquely specify the strength and structure of the magnetic field.

A single comparison of a flve-mlnute X-ray image with a seven-hour VLA

synthesis map at 20 cm wavelength led Webb et al. (1986) to conclude that complete

loops cannot he imaged at this wavelength. Lang et al. (1986) subsequently compared

hlgh-resolutlon 20,cm maps (VIA) with simultaneous hlgh-resolutlon soft X-ray

images taken with the X-ray Polychromator (XRP) aboard the Solar Maximum Mission

(SMM) satellite. They showed that complete X-ray coronal loops can be mapped at

20-cm wavelength and pointed out the potential advantages of comparing high

resolution VLA and S_-XRP data.

In this paper we provide another example in which the coronal radiation at

20-cm and X-ray wavelengths coincide. The observations are presented in §II where

we also present radio-wavelength spectra that are attributed to a thermal

cyclotron llne. In Sill we provide values for the electron density, electron

temperature and magnetic field strength in these coronal loops and attribute the

20-cm radiation to thermal gyroresonance emission. The X-ray values of electron

density and electron temperature are combined with the 20-cm brightness

temperature and the cyclotron llne to infer the harmonic of the gyrofrequency. Our

results are summarized in §IV.
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II. OBSERVATIONS

Z_

i

!

We have used the Very Large Array (VLA) and the X-ray Polychromator (XRP)

aboard the Solar _laxlmum Mission (SMM) satellite to observe the solar active region

AR 4663 on 1985 June 7. The VLA was used in the B configuration at I0 different

wavelengths between 21.8 cm (1440 MHz) and 17.4 cm (1720 MHz) wlth bandwldths of

12.5 MHz during a 9 hour period between 1500 UT and 2400 UT on June 7, and the

Flat Crystal Spectrometer (FCS) of the S_-XRP observed six prominent soft X-ray

lines (0 VIII, Ne IX, Mg XI, SI XIII, S XV and Fe XXV) for a 4.7 hour period

between 1500 UT and 1940 UT on June 7. The position of AR 4663 on the solar

surface was 01 ° N and 65 ° E at 1300 t_ on June 7.

The half-power beamwldth of the individual VLA antennae ranged between 26'

and 31', and the synthesized maps constructed from up to 325 Interferometer pairs

had beamwldths between 3.0" x 3.5" and 3.6" x 4.2". The active region was

observed with the VLA at successive pairs of wavelengths for 5 minutes each, so

that all I0 wavelengths could be observed in 25 minutes. Thls sequence of

observations was followed by successive 2 minute observations of the calibrator

source PKS 0552 + 398 whose flux density was 1.7 Jy at 1465 MHz. The calibrated

data for the 9 hour interval were used together with the standard CLEAN procedure

to make synthesis maps of both the total intensity, I, and circular polarization

or Stokes parameter V. No solar bursts or flares were observed during this

interval, and the synthesis maps therefore refer to the quiescent, or non-flarlng,

radio emission. There was no detectable clrcular polarization ( V/I ( 15% )

suggesting that the region was optically thick to both the extraordinary and

ordinary modes of wave propagation at 20-cm wavelength.

The 14" collimated field of vlew of the FCS was rastered over a 4' x 4' area

wlth a plxel spacing of 9" x 9". X-ray images were obtained for each of the slx

spectral llnes every 128 s during the orbltal day. All of the avallable data for
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each spectral llne during each i hour orbit were then summed and averaged

to improve the statistical uncertainty on the count rate from each

plxel. Significant emission was detected in the three softest c_nnels - 0 VIII,

Ne IX and Mg XI. The peak formation temperatures for these lines are 3 x i0 6 K,

4 x 106 K and 7 x 106 K, respectlvely. The failure to detect emission in the

harder, more energetic channels indicates that the active region was stable and

unperturbed by flaring activity throughout the period of observation.

The XRP also produced a white-light image that showed the sunspots, making

it possible to align the X-ray Images with the sunspots to an accuracy of 10".

The VLkmaps of the total intensity, I, at 20-cm wavelength were aligned with _a

photographs of the same sunspots with a slmilar 10" accuracy. This enabled us to

compare the soft X-ray and 20 cm data for the same field of view and angular

scale.

As illustrated in Figure I, the 20-cm (1480 MHz) radiation and the soft

X-ray (0 VIII) emission originated in the same area. Observations at both wave-

lengths apparently describe the same coronal loops or arcades of loops. They are

about 60" across, which corresponds to a linear extent, L, of L = 5 x 109 cm.

Both the radio and the X-ray emission stretch between and across regions of

opposite magnetic polarlty seen In magnetograms of the underlying photosphere

(see Figure 2).

As illustrated in Figure 3, the radlo-wavelength coronal loops exhibited the

same elllpsolda1 shape and extent at 10 closely spaced frequencies ranging from

between 1440 MHz (20.8 cm) and 1725 t_4z (17.4 cm). The maximum brightness

temperature of these loop-llke structures varied by a factor of two (see Table I),

indicating that observations at a single wavelength may give a misleading

representation of the brightness temperature and optical depth.

The maximum brightness temperatures are plotted as a function of observing
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frequency in Figure 4. This spectrum contains a llne-like feature with a central

frequency, v, of v = 1650 MHz and a full-width-to-half-maxlmum, Av, of 8v - 80 MHz.

As discussed in more detail in the next section, we attribute thls feature to a

thermal cyclotron llne and use it to obtain an accurate estimate of the coronal

magnetic field strength.

III. DISCUSSION

In order to identify the dominant thermal radiation mechanism at 20-cm

wavelength, one needs to know the electron temperature, electron density, and the

magnetic field strength. The X-ray data were therefore used to infer the mean

electron temperature, Te, and the mean electron density, Ne, for the regions marked

A, B, C and D in Figure 5. As previously mentioned, the active region was so

quiescent that it was only detectable in the three softest X-ray channels (0 VIII,

Ne IX and Mg XI). Because the 0 VIII to Ne IX line intensity ratio is insensitive

to temperature variations over the temperature range typical of solar active

regions, the ratios of the other two lines (0 VIII to Mg XI and Ne IX to Ng XI)

were used as temperature diagnostics.

An emission measure _ms inferred from the temperature and the observed X-ray

fluxes. The electron density was then calculated using a volume of 3 x 1027 cm 3,

which equals the product of the FCS pixel area and a typical soft X-ray scale

height of 3 x 109 cm.

The mean temperatures and densities are given in Table 2. We obtain average

values of Te = 2.85 ± 0.0B x 106 K and Ne = 1.8 ± 0.3 x 1010 cm -3 when averaged

over all the coronal loops or arcades cf loops. Here the uncertainties correspond

to the maximum possible deviation that reproduces the flux in all the detected

X-ray lines to within 1 standard deviation of the observed values. The inferred

values of electron temperature and electron density are typical of those of
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quiescent coronal active region loops. Within the uncertainties, the observed

loops were isothermal and isobaric, but there was a statlstlcally-uncertaln

tendency for a hotter temperature at the loop apex.

We may use the parameters derived from X-ray observations to_estlmate the

optical depth and brightness temperture of the X-ray emitting plasma at radio

wavelengths. Assuming an isothermal source of electron temperature, 're, and

optical depth, T, the observed radio brightness temperature, TB, will be given by

i,

t

TB - 'z T e for T << I (optically thin)

and (I)

TB " [ I - exp (-z) ] Te for z _ I (optically thick).

The free-free optical depth, zf_f, for an isothermal loop with electron

temperature, "re, and width or thickness, W, is (Lang, 1980)

Tf-f - 9.8 x 10-3

Ne2W T e
In (4.7 x I0 I0 -- )

2 3/2 v
v Te

, (2)

where v is the observing frequency in Hz and Ne is the electron density in cm-3.

Using v - 1.65 x 109 Hz, corresponding to the center of our line-like feature,

together with the X-ray values of Te= 2.85 x 106 K and Ne " 1.8 x 1010 cm -3 and

a typical loop thickness of W - 1 x 109 cm in equation (2), we obtain Tf_f u 4.

The plasma is therefore optically thick to thermal bremsstrahlung at this

frequency, and the brightness temperature TB = 3 x 106 K inferred from equation (1)

is consistent with that observed at this frequency. However, the optical depth

will be only slightly greater at lower frequencies, and we would not expect the
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dramatic changes in brightness temperature shown in figure 4.

We must therefore examine the alternative possibility of thermal gyroresonance

radiation. The optical depth, Tg_r, due to gyroresonance absorption is given by

(Zheleznyakov 1970):

n2n --Up2 ( kTe / n-IZg-r = 2w2 2n+lnt -- LH (i ± cosa) 2 sln2n-2a (3)• cv mc 2

where n - 1, 2, 3,... Is the harmonic number, the plasma frequency Up - 8.9 x 103
1/2

Ne Hz, the velocity of light c - 2.9979 x 1010 cm s -1, Boltzmann's constant

k - 1.38 x 10-16 erg OK-l, the electron mass m - 9.1 x 10 -28 g, the scale height

of the magnetic field is LH, and a is the angle between the line of sight and

the direction of the magnetic field lines. Collecting terms, we obtain

n2n Ne n-l

rg-r = 0.052 2n+l----_! --_ (1.7 x I0 -I0 Te)
LH (I ± cosa) 2 sln2n-2a (4)

The harmonic n is related to the observing frequency v and the magnetic field

strength H through the relation

v = 2.8 x 106 nH Hz (5)

In order for gyroresonance absorption to dominate free-free absorption at our

reference frequency v - 1.65 x 109 Hz, the layers must be optically thick with
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Xg-r > xf_f = 4. We will adopt Xg_ r - 6 and determine the harmonic number, n. If we

assume a magnetic scale height L_ = l x 109 cm and a = 65 °, the solar longitude of

AR 4663, then _e may use these parameters together with the X-ray values of

Ne ffi 1.8 x 1010 cm-3 and Te = 2.85 x 106 K in equation (4) to obtain n = 4.

To put it another way, the fourth b_rmonic of the gyrofrequency becomes

optically thick to gyroresonance absorption with TB - Te and Xg_ r _ xf_f. We can

use equation (6) with n = 4 and v = 1.65 x 109 _Iz to obtain a magnetic field

strength of R = 147 G. This is consistent with model calculations of the spectrum

of another thermal cyclotron llne in which n = 4 or possibly n = 5, with _ = 145 G

or possibly H = 119 G (Wlllson 1985), but in the case presented here, we do not have

to make ad hoc assumptions about Ne and Te.

But these are general arguments based upon homogeneous, isothermal models.

When Table I and Figure 4 are examined in greater detail, we notice that inhomo-

geneities are required. For example, the 20-cm brightness temperture, TB, is

usually lower than the electron temperature, Te, suggesting that the radio emission

from the hot, optlcally-thick loops is partially absorbed in a cooler external

plasma. In addition, the TB at 1650 MHz is greater than Te, suggesting a thin,

hot gyroresonance layer similar to that proposed by Willson (1985). The detailed

radio spectrum is probably due to a mixture of hot and cool loops whose average

properties are inferred from X-ray observations. In any event, a key aspect of

the use of thermal cyclotron lines as a coronal diagnostic is the accuracy with

case, a change AH of only 5 @ would shi£t the line center frequency by 56 MHz.

Because the llne half width is only B0 _Iz, we can conclude that we know H to a

precision of better than 5 G and conservatively estimate that H = 147 ± 5 G.

Here we should point out that individual cyclotron lines are observed near the

apex of coronal loops where the magnetic field is relatively constant and a steep

temperature gradient may exist. Neutral currents might also play a role, leading

to intense radio emission from a relatively thin layer near the loop apex. The
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field strength decreases uniformly with height. The cyclotron lines from loop legs

will, however, exhibit a great deal of spatial structure if the loops are thin

enough (Holman and Kundu 1986). Observations of thin loops at an oblique angle

with wavelengths X - 6 cm should lead to the spatial resolution of c_lotron-

emitting layers along the loop legs, while observations of the loop apex at A - 20 cm

can resolve cyclotron lines in this region. Both techniques can provide a powerful

diagnostic of the magnetic and thermal properties of coronal loops.

-114-



IV. SUMMARY

Simultaneous hlgh-resolutlon observations of AR 4663 with the VIA and the

SMM-XRP indicate that the radiation at 20-cm and soft X-ray wavelengths originates

from the same region, and that 20-cm VIA maps can image X-ray corona_loops. The

X-ray spectral lines were used to infer an average electron temperature of

Te = 2.85 -+ 0.08 x 106 K and an average electron density of Ne - 1.8 -+0.3 x 1010 c

These parameters were used to show that the layers emitting 20-cm radiation can be on -3.

optically thick to either thermal bremsstrahlung or thermal gyroresonance radia-

tion, depending upon unknown but plauslble values of loop thickness, magnetic scale

height and magnetic field strength.

The absence of circular polarization suggests that these coronal loops are

optically thick at wavelengths near 20 cm, and the detection of a llne-llke feature

in the radio spectrum indicates that gyroresonance absorption exceeds free-free

absorption. This feature is attributed to a thermal cyclotron llne. The X-ray

values for Te and Ne were combined with plauslble values for gyroresonant optlcal

depth and the magnetic scale height to show that the 20-cm radiation is at the

fourth harmonic of the gyrofrequency. The central frequency and relatlvely narrow

width of the thermal cyclotron llne were combined with this harmonic to Infer a

magnetic fleld strength, H, of H = 147 i 5 G at the apex of these coronal loops.
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Table I.

°.

Maximum brightness temperatures, TBmax , of the coronal loops within

AR 4336 at different radio frequencies.

Y

4,

Frequency TBmax

(.,mz) (°K)

1440 1.7 x 106

1480 1.9 x 106

1515 2.0 x 106

1558 2.3 x 106

1585 2.2 x 106

Frequency TBmax

(_z) (°K)

1620 2.8 x i0

1658 3.8 x 106

1690 2.4 x 106

1705 2.0 x 106

1725 1.8 x 106
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Table 2. The mean electron temperature, 're, and the mean electron density,

Ne, for the regions marked A, B, C and D in Figure 5. Values averaged over

all four regions are given at the bottom of each column.

Region Te Ne

(°K) (cm-3)

A 2.87 x 106 1.8 x 1010

B 2.92 x 106 2.2 x I0 I0

C 2.93 x 106 1.4 x I0 I0

D 2.69 x 106 1.8 x i0 I0

Average 2.85 x 106 1.8 x 1010
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FIGURE LEGENDS

Fig. I. A comparison of 20 cm (VLA-left), soft X-ray (SMH-XRP-center) and Ha

(SOON-right) images of AR 4663 on 1985 June 7. The fleld of view of'all three

images is identical, and the identical angular scale can be inferred from the

60" spacing between fiducfal marks on the axes. The contours of the 20 cm map

mark levels of equal brightness temperature corresponding to 0.2, 0.4,...1.0 times

the maximum brightness temperature of 1.8 x 106 K. The soft X-ray data were
O

taken fn'.the O VIII line (18.9 A) with contours corresponding to , ,

and counts per second above a background level of counts per second

with a maximum signal of counts per second.

Fig. 2. The 20 cm contours of equal brightness temperature (solid black lines)

are superposed on a Kitt Peak National Observatory (KPNO) magnetogram of AR 4663

on 1985 June 7. The black magnetogram features indicate regions of negative

magnetic polarity with magnetic fields pointed in towards the Sun, while the white

magnetogram areas are regions of positive magnetic polarity with magnetic field

lines pointed out towards the observer. The KPNO magnetogram is coutesy of

Jack Harvey of the National Solar Observatory.

Fig. 3. VLA synthesis maps of the total intensity, I, of AR 4663 at I0 closely

spaced frequencies during a 9 hour period on 1985 June 7. The synthesized

beamwidth was about 3" x 4", and the spacing between fiduclal marks on the axes

is 60". The map contours mark levels of equal brightness temperature, with an

outermost contour of 7.6 x 105 K and a contour interval of 3.8 x 105 K. The

maximum brightness temperatures are given in Table I and plotted in Figure 4.
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Fig. 4. The maximum brightness temperature of the coronal loops of AR 4663

at I0 closely spaced frequencies on 1985 June 7. The maximum temperatures

were inferred from the 9-hour synthesis maps shown in Figure 3, and the error
°

bars correspond to the peak-to-peak fluctuations in the background _mperature

of the synthesis maps.

@

Fig. 5. A soft X-ray map of AR 4663 taken in the 0 Vlll llne (18.9 A)

with contours corresponding to , and counts per second. The

ratio of the O Vlll and Hg Xl line intensities were used to determine the mean

electron temperature in the regions marked A, B, C and D. These temperatures

are given together with estimates for the mean electron density in Table 2.
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ABSTRACT

i

We present the first Very Large _xray (VLA) observations of the Sun at

92 cm wavelength (328 _Htz). A solar noise storm, which lasted at_ast 3 hours,

was detected at this wavelength and resolved with an angular resolution of

9". Snapshot maps of successive stor_ peaks indicate an elongated source

with a persistant unchanging shape whose half-power angular size was 40" x 120".

This result is not inconsistent with previous observations of a decrease in
v"

source size at increasing frequency, but it does indicate a previously

unsuspected complexity to noise storm structure. The observed noise storm

consisted of burst-like spikes superimposed on a slowly varying background.

Both of these storm components were 95 ± 5% right-hand circularly polarized.

This polarization is consistent with the ordinary mode of wave propagation in

coronal magnetic fields that are connected to the dominant, leading sunspot of

the associated active region. If the storm source lies radially above this

sunspot, the source has a height, h, of h = 0.30 ± 0.30 R@ = 2.0 ± 0.2 x 1010 cm

above the photosphere. This result is consistent with an average storm height

that decreases with increasing frequency. Ionospheric refraction viii produce

a noontime position shift, bSi, of A81 - 15" at 92 cm wavelength. Greater

position shifts can be expected at larger hour angles, but these shifts can

be removed by frequent observations of a nearby calibrator source. An

electron density of Ne = 1.4 x 109 cm-3 is inferred for h = 0.3 _, suggesting

a dense plasma trapped in coronal loops. The plasma radiation also requires

magnetic field strengths H << 100 G st h = 0.3 Re. A long-duration soft

X-ray event had a similar time profile to that of the noise stor_, but the

onset of the X-ray emission preceded that of the radio radiation by 30 minutes

This suggests a disturbance moving outwards at a velocity of v - 100 km s -1.
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During the first two hours, the noise storm consisted of two compact sources,

each 40" in angular dlam_ter and separated by 120". An angular size of 40"

6"

would be expected if the waves that excite the storm source move _ the

veloclty of llght for a duration of 0.1 s. Future VIA observations may

distinguish between the sources of Type I bursts and the slowly-varylng

background, resolvlng both of them for the first time. The VIA can also test

and constrain theoretlcal models in which newly-emerglng magnetic flux arises

in regions of strong, pre-existing coronal fields, thereby initiating and

maintaining solar noise storms. The second harmonic of the storm plasma

frequency can potentially be detected by the VIA for the first time. Future

VIA observations at 92 cm wavelength will also provide new information about

the middle corona in which open and closed magnetic fleld llnes coexist,

thereby providing new clues to the origin of coronal transients, declmetrlc

bursts, and possibly even the solar wind.
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I. INTRODUCTION

Noise stoi_ns are the most common phenomenon observed on the Sun at
o.

dectmetric and metric wavelengths (see Elgaroy 1977 and Kai, Heli_se and

Susaki 1985 for reviews). Here we will present a brief synopsis of their

properties, thereby provtding a perspective for our subsequent observations

and discussion.

The noise storms consist of a slowly-varying, wide-band continuum

radiation with superimposed short-lived, narrow-band bursts. The background

continuum, which is usually observed between 50 and 350 MHz, normally

continues for a few hours and sometimes lasts for days. The noise storms are

clearly associated with solar active regions, but there is no clear-cut

association with solar flares.

Literally thousands of storm bursts are emitted, each wlth a bandwidth

between 2 and 10 MHz and a duration of 0.I to 2s. These bursts have been

designated Type I bursts in order to distinguish them from other types of

solar bursts. They are superimposed upon a continuum that is not thought to

be composed of numerous bursts.

Both the background contlnuumand the bursts are strongly circularly

polarlzed (up to 100%), usually with the same sense and degree of

polarization. This polarization is attributed to coronal magnetic fields that

connect with underlylng sunspots. The sense of circular polarization usually

corresponds to the ordinary mode of wave propagation in the magnetic fleld of

the nearest leading spot; rlght-handed circular polarization therefore

corresponds to negative magnetic polarity with the magnetic field lines

pointed in towards the Sun.
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It is thought that noise storms are some kind of plasma radiation emitted

at the plasma frequency, and this is consistent with circular polarization in

the ordinary mode. The emission originates in the lower solar corona at

altltudes of between 0. I and 0.SR. (solar radii) above the photosphere.

Radiation at lower frequencies orlgfnates at higher altitudes where the

electron density and plasma frequency are smaller than those at lower

altitudes. The inferred electron density at a given altitude is greater than

that of the quiet corona at this altltude, suggesting an origin in closed

magnetic loops (coronal loops) that contain a hlgh-denslty plasma.

Noise storms therefore appear to be due to plasma radiation at different

altitudes within coronal loops. This radiation is triggered by some event,

and then continues to be emitted for hours at a fixed altitude for each

frequency. As we shall subsequently see, there is controversy over the cause

of both the initial triggering and the continued excitation of solar noise

storms. Very Large Array (VLA) observations will provide new insights that

may resolve these controversies.

II. OBSERVATIONS

a) Time Profile

The VLAwas used to observe the solar active region AR4732 in the A

configuration between 1300 UT and 2400 UT on 29 May 1986. The position of AR

4731 was on ON 40W on this day. The array was divided into two subarrays with

12 antennas operating at 92 cm wavelength (328 MHz) with a 3.12 MHz bandwidth

and 15 antennas operating at 21 cm wavelength (1420 MHz) with a 12.5 MHz
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bandwidth. The beamwldth of the individual antennae at 21 cm was 31.5' and

included the active reglon AR4731 located at 6S 50W at 1300 UT on 29 May.

The Indlvldual antennae had beamwldths of 138' at 92 cm_ which includes the

entire visible disk of the Sun, but AR 4731 and AR 4732 were the_nly active

regions on the vlslble solar surface during our observations.

All four Stokes parameters were sampled every 6.67s, and the data were

callbrated by observing 3C 84 every 30 minutes. The flux density of 3C 84 was

assumed to be 32.0 Jy and 8.0 Jy at 21 cm and 92 cm, respectively.

As illustrated in Figure I, a noise storm was detected at 92 cm between

about 1930 UT and 2400 UT. No noise storm was detected at 21 cm, but this is

not surprising for plasma radiation at this wavelength would be absorbed in

the overlying solar atmosphere. The 92 cm noise storm consisted of numerous

burst-llke spikes superimposed on slowly-varylng emission.

The burst-llke spikes are analogous to Type I bursts_ but the observed

data have relatively long integration times that probably integrate the

emission of several Type I bursts or chains of bursts. The slowly-varylng

emission resembles the background continuum of a typical noise storm. Both

the burst-llke spikes and the slowly-varylng background emission were 95 ± 5Z

rlght-hand clrcularly polarized.

b) Source Size and Brightness Temperature

Observations of noise storms with the Culgoora radiohellograph at two

frequencies (80 and 160 MHz) and wlth the Clark Lake facility at several

frequencies between 20 and 65 MHz suggest that the higher frequency radiation
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originates in more compact sources (Gergely and Kundu 1975; Stewart 1976;

McLean 1981). Thls downward trend in source size with increasing frequency

was also suggested by a small sample of storm sources observed with the

Culgoora instrument at 80, 160 and 327 HHz (Sheridan, et al. 198_

Characteristic half-power angular sizes of 0 ~ 6" 3', and 1.5 t were

respectively obtained at 80, 160 and 327 HHz.

However, storm sources are also often unresolved with even the largest

radlo telescopes, and the telescope bea_Idths exhibit a dlsturblngly slmilar

downward trend wlth increasing frequency. There have been no systematic

hlgh-resolutlon investigations of the size and shape of solar noise storms

because of the poor resolvlng power of the existing radio telescopes. But now

the VLA can provide angular resolutions that are more than an order of

magnitude better than those of previous observations. Angular resolutlons as

great as 5 can be obtained with the VLA at 92 cm wavelength (328 MHz). By

way of comparison, the Culgoora and Nancay instruments had respective

beamwidths of ~2' and ~1.3' at 160MHz.

The VLAalso has the capability of making snapshot maps at time intervals

as short as 3 s. As an example, Figure 2 shows VLA snapshot maps of

successive peaks in the emisslon of the 92 cm noise storm shown in Figure 1

(peaks 3, 4, 5, and 6 and 7). This storm originates in an elongated source

that has a perststant, unchanging shape with a half-power angular size of

about 40" x 120". For comparison, the tapered beamwidth of 9" x 9" is shown

as a black dot.

Although this result is not inconsistent wlth previous observations of a

decrease in source size at higher frequencies, it suggests that complex source



structure will be revealed at high resolution. Such complexity may well rule

out the simple model in which noise storms originate within a conlcal column

(diverging magnetic fields) whose size increases wlth height (McLean 1973, •

1981). ..

The largest peak brightness temperature_ TB, of the sources shown in

Figure 2 was TB - 1.6 x 107 K. This is at least an order of magnitude lower

than the brightness temperatures observed at lower frequencies for other noise

storms (T B 108 to 109 K at 160 HHz). Several plausible explanations might

account for the lower TB observed at 92 cm, Including the ability of the VIA

to detect weak noise storms, a reduced signal caused by integrating over

several short-lived bursts, partial absorption in the overlying solar

atmosphere, and a drop in the intrinsic source spectrum at high frequencies.

c) Circular Polarization and Magnetic Structure

The strong circular polarlzatlon of the 92 cm noise storm can be

attributed to coronal magnetic flelds that connect regions of opposite

magnetic polarity In the underlylng photosphere. Moreover, the sense of

clrcular polarization should correspond wlth that of the ordinary mode

expected from plasma radiation in a strong magnetic field (Dulk and Nelson

1973; Stewart 1985). Right-handed circular polarization Is therefore

associated with negative magnetic polarlty In which the magnetic fleld Is

directed away from the observer and Into the Sun. Left-handed circular

polarization is similarly associated with positive magnetic polarity in which

the magnetic fleld is directed towards the observer. By way of contrast,

solar microwave radiation at the shorter 6 cm wavelength often exhibits the

opposite behavlor_ with clrcular polarization in the extraordinary mode
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expected from thermal cyclotron radiation In the legs of lo_P-lylng coronal

loops (Lang and Wlllson 1982; Kundu and Lang 1985).

Because our observed storm was 95 ¢ 5% rlght-hand clrcularly polarized,

it should orlginate In coronal magnetic flelds that are connected wlth the "

dark, negatlve-polarltymagnetogram features shown in Figure 3. _cause the

noise storm projects radlally downward to the more central active region (AR

4732), the storm source is most llkely associated with magnetic flelds that

connect to the dark dominant, leadlng spot of AR 4732.

As a matter of factp noise storms are usually related to the dominant,

leading sunspot of the associated active region. If this applles to our

observations, then we can conclude that the observed radiation is polarized in

the ordinary mode of the magneto-lonlc theory and that It is probably due to

plasma radiation.

Thus, the storm source is most likely plasma radiation in magnetic fields

connected to the dark, leading spot of AR 4372. As illustrated in Figure 3,

the angular slze and distance of the noise storm are nevertheless larger

than the angular separation of the leadlng and traillng spots of AR 4372. If

the storm orlglnates in closed magnetic loops, then they may not be solely

connected to the bipolar AR4372. Large-scale magnetic flelds may instead

connect the leading spots of the two active regions AR4371 and AR 4372. A

slmilar model has been proposed by Kal and Sheridan (1974) for other noise

storms. Howeverp our observations cannot by themselves rule out the

possibility of open magnetic field lines that extend out into the

interplanetary medium.
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d) Source Height, Electron Density and Ionspherlc Refraction

The height of a noise storm can be found if we assume that it lies

radially above the associated sunspot. Under this assumption, the average

i.

observed heights, h, at 160 _z and 80 _z were h = 0.4 R. and h I_-0.8 R.

above the photosphere (Stewart 1976). Noise storms at the higher frequencies

of 327 NHz and 408 _z have estimated heights of h = 0.2 R. and h = 0.I R. ,

respectively (Sheridan, et al. 1983; Claveller 1967).

Thus, the average height of the noise storm source decreases with

increasing frequency. Our observations support this conclusion. The angular

displacement of the noise storm from its associated spot is A0 = 2.31 (when

corrected for ionospheric refraction mentioned subsequently), and this

dlsplacement corresponds to a radial height of h = 2.0 ± 0.2 x 1010 cm = 0.30

± 0.03 R..

But this downward trend in height wlth increasing observing frequency is

a quite general characteristic of solar radio emission. Higher frequencies

usually arise closer to the solar surface because emission at frequency v can

arise only from regions where the electron plasma frequency Vp = 8.9 x 10 3

Ne I/2 Hz is equal to or lower than v. Because the electron density, Ne,

decreases as a function of height in the corona, Vp also decreases with height

and the lower frequencies must thus arise from greater heights.

It is the long-llved nature of noise storms that is the surprising thing.

Storm radiation at frequency v apparently originates in a relatlvely thin

layer at a fixed height that corresponds to the local plasma frequency Vp; and

the height and relevant electron density remain relatively constant for hours.

Moreover, the electron density at the measured height is larger than that

inferred for the quiet coronal atmosphere. If we assume v = Vp, then our
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observations at v - 328 MHz give an electron density of Ne - 1.4 x 109 cm-3 at

a height of h - 2.0 x 1010 cm above the photosphere. This electron density is

an order of magnitude larger than that inferred from eclipse observations of

the quiet corona and coronal active regions (Newkirk 1961; Saito_970), and it

supports previous observations of noise storms that indicated enhanced

electron densities at a given height in the corona (Stewart 1976)o Both the

enhanced electron density and the long-lived nature of noise storms suggest

that they originate in a dense plasma that is trapped within coronal loops.

In fac_, our observed electron density of Ne ffi 1.4 X 109 cm-3 is comparable to

that inferred from soft X-ray observations of coronal loops.

Refraction in the Earth's ionsphere will lead to a shift in source

position and an error in height determination. This shift is smallest at

source transit and largest near the horizon. It is also relatively large at

sunrise and at times of increased solar activity.

In order to estimate refraction effects at 92 cm (328 MHz), we will

build upon previous work at lower frequencies and note that the position shift

is proportional tothe inverse square of the observing frequency. When

theoretical formulae given by Komesaroff (1960) are combined with measurements

of the ionospheric electron density, Stewart and McLean (1982) obtain a

noontime ionospheric shift of A81 - 60" to the south at 160 MHz. Assuming

that the refraction scales as the inverse square of the frequency, this

corresponds to a noontime ionospheric shift of A81 = 15" at 328 HHz. Greater

position shifts can be expected at larger hour angles.

By way of comparison, Erikson (1984) determined the r.m.s, uncertainty,

Aoi, in determining the positions of sources in night-time maps at frequencies
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between 30 and 80 MHz. He found Ao I = 60" at 80 HHz and noted that this could

be extrapolated to the Aa I - I" at 600 HHz reported by Spoelstra (1983). Our

noontime ionospheric shift of AOI = 15" at 332 HHz therefore corresponds to

AOI = 4Ao I when previous results are scaled by the inverse square_f the

observing frequency.

When measuring the source height, we have corrected the observed shift

for AOl, and note that the uncertafntles In height correspond to a shift

uncertainty of AOI. There will also be uncertainties in source size due to

fluctuatlons in the ionospheric electron density that produce random position

shifts. However, these size uncertainties are expected to be smaller than the

synthesized VLA bea_idth of 5" to I0" at 92 cm, and they therefore do not

need to be taken into account. Moreover, the systematic position shift AOI

can be automatically removed from future VLAdata by frequent observations of

a nearby calibration source.

III. DISCUSSION

a) Radiation and Excitation Mechanisms

Our observations are consistent with the idea that noise storms are due

to plasma radiation wlth polarization in the ordlnarymode. The plasma is

constrained by coronal magnetic flelds that connect to the dominant, leadlng

spot of the associated active region. At our observing frequency of u - 328

MHz, we infer an electron density of Ne - 1.4 X 109 cm-3 for the height h =

2.0 x 1010 cm from the condition that u = Up, where the plasma frequency Up =

8.9 x I03Nel/2 Hz.
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The plasma radiation will dominate over thermal cyclotron radiation when

v ffi Vp >> VH, where the gyrofrequency v H - 2.8 x 106H Hz and H Is the magnetic

field strength in Gauss. Thus, we have H << I00 G in the storm source at a'

height of h - 2.0 x 1010 cm above the photosphere. The condltlon-for

suppression of the extraordinary mode of wave propagation, with the resultant

escape of the ordinary mode_ slmilarly requires H << I00 G at this height.

But what process triggers the onset of the solar noise storm, and what

mechanism continues to excite this radiation In a relatively-small coronal

volume for hours and even days? Some upward travelllng disturbance probably

excites plasma waves that are converted into electromagnetic radiation at the

local plasma frequency. Because the electron density decreases wlth

increasing height, thls would account for the apparent decrease in its

radiation frequency at higher altitudes. Of coursej a magnetic field is

required to explain the high clrcular polarization of the radiation, and

upwardly-dlverglng magnetic fleld lines may account for the increase in source

size with height.

There Is, however, no generally accepted explanation for the Inltlating

and driving mechanisms for solar noise storms. These mechanisms are probably

related to magnetic evolution at coronal levels in the atmosphere above active

regions. Noise storm duratlons of hours or several days are, for example,

comparable to the time scales of coronal evolution, but much longer than the

short-llved Ha flares and microwave bursts. A central ingredient of recent

noise storm theories has therefore been the emergence of new magnetic flux in

regions of strong, pre-existing coronal magnetic fields.
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McLean (1981) has, for example, presented a model in which new dlpolar

magnetic structures emerge and move out through pre-existing ones, thereby

initiating solar noise storms. Emerging magnetic flux in existing active

regions has also been used to explain the association of noise storms with the
..

sector structure of the interplanetary magnetic field (Stewart 1985).

Newly-emerging magnetic fields might drive shocks or generate waves that move

out into the corona where they initiate and maintain noise storms (Spicer,

Benz and Huba 1981; Benz and Wentzel 1980).

But is there any direct observational evidence for an association between

noise storms and newly-emerging magnetic flux? Noise storms have been related

to eruptive proudnences seen on the solar limb (McLean 1973), and the onset of

three noise storms has been related to erupting filaments and coronal

transients in conjunction with long-duration (hours) soft X-ray events (Webb

and Kundu 1978)o More recently, Lantos et al. (1981) have demonstrated a

strong similarity between the time profiles of a noise storm at 169 MHz and a

soft X-ray event of long duration (about one hour). In this case, the X-ray

and radio events started at about the same time, and the radio noise storm was

located in one leg of a white-light coronal transient observed with the Solar

Maximum Mission Coronagraph/Polarlmeter (SMM-C/P).

As illustrated in Figure 4. a long-duratlon soft X-ray event was also

associated with the noise storm on 29 May 1986. The similar time profiles of

the X-ray and radio emission suggest a physical link between the sources of

the two types of radiation. In this case, the onset of the X-ray emission

preceded that of the 92 cm radiation by about 30 m, suggestlng that the noise
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storm was triggered by a disturbance moving outwards from the source of X-ray

radiation. If we assume that the sources of radiation at the two spectral

regions are separated by a distance of d = 0.3R. = 2 x 1010 cm, then the

disturbance is moving outwards at a velocity of v ~ 100 km s-l. This speed is
o.

probably higher than the local Klfveu.velocity, suggesting that t_e

disturbance is a shock wave.

Information about the actual initiation and excitation of the noise storm

will be obtained by observing the lowest possible level, or highest possible

frequency. In fact, the 92 cm (or 328 MHz) VLAobservatlons refer to one of

the lowest levels that noise storms have been observed, and the high-

resolution data provide some intriguing information about storm excitation.

As illustrated in Figure 5, both the onset and the first maximum of the 92 cm

noise storm consisted of two compact sources, each about 40" in angular

diameter and separated by 120". These sources became gradually hotter during

the course of three hours, increasing in brightness temperature from 2.4 x

106 K to 3.8 x 106 K.

An angular diameter of 40" corresponds to a linear size, L, of L ~ 3 x

109 cm at the Sun's distance; Waves moving at the velocity of light would

cross this dimension in a time, t, of t = 0.I s. Because nothing can move

faster than the velocity of light, the duration of an exciting source with

this size must be t _ 0.1 s. This is precisely the observed limit to the

duration of individual Type I bursts! For instance, the duration of Type I
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bursts at 318 MHz is 0.1 s _ t _ 0.5 s with an average value of t = 0.2 s

(Elgaroy 1977). The VLA has therefore most probably resolved the intrinsic

structure of the individual burst emitter even though individual bursts were

not resolved in time. This emitter is probably the source of both the
..

slowly-varying emission and the Type I bursts, for there was no substantial

change in source structure for two hours.

b) Future VLA Potential

The VIA can potentially resolve noise storm sources with an angular

resoltuion of 5" at 92 cm wavelength. Snapshot synthesis maps can be made

with this resolution for intervals as short as 3 s, which is comparable to the

duration of chains of Type I bursts. The observing bandwidth, Av, can be

comparable to that of Type I bursts (A_ ~ 6 MHz), and an improvement in VIA

integration time to 0.1 s would permit observations of individual Type I

bursts. Such an improvement would also benefit related VIA studies of flare

stars and solar bursts at microwave wavelengths.

The VLA can probably distinguish between the two principal components of

noise storms with the present integration time, thereby resolving the sources

of Type I bursts and the background continuum for the first time. Future VLA

observations will therefore probably determine if the two sources have

comparable or different sizes, and if one of them resides within the other.

Storm source sizes of 40" are expected if the waves within these sources move

at the velocity of light with a duration of 0.1 s. Because the VLA has

already been used to resolve storm sources with this size, it will detect

individual emitters rather than the effects of scattering in the solar

atmosphere.
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Future VLA studies of the time profile, height and structure of noise

storms wlll also provide new insights to their triggering and excitation

mechanisms. VIA synthesis maps of clrcular polarlzatlon wlll dellneate the

magnetic fleld topology at the site of energy release. Radial extrapolations

down to the photosphere may conflrmthe hypothesis that the nolse"_torm

sources are connected with sunspots whose magnetic polarity indicated circular

polarlzatlon in the ordinary mode. Thls has only been convincingly

demonstrated for a few small sources at lower frequencies (Dulk and Nelson

1973). Comparisons with ground-based optlcal observations of erupting

filaments and satelllte observatlonsof soft XL_'_v_S and Coronal

transients may confirm sugestlons of a llnk between noise storms and these

phenomena.

Both the fundamental and the second harmonic of the plasma frequency

might be detected if an intense noise storm is observed with both the VIA and

a smaller patrol-type solar radio telescope. The fundamental plasma radiation

is all that has been prevlously observed, prlmarily because of the low

brightness temperature of the harmonic. The large collectlng area and high

angular resolution of the VLAwIII vastly imporve detection thresholds. For

instance, the fundamental noise storm radiation might be detected at 164 MHz

with a typical brightness temperature of 109 K. The predicted brightness

temperature of the second harmonic at 328 MHz would be about 5 x 106 K for a

40" source (Benz and Wentzel 1980). The VLA could easily detect such a

signal.

In fact, we have already detected a noise storm with a comparable

brightness temperature, but the absense of thls event in Sagamore Hill

observations at higher frequencies indicates that it is the fundamental of an
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intrinsically-weak noise storm. Nevertheless, there is strong future

potential for the VLA detection of the second harmonic of a strong noise

storm. This would provide important constraints to theoretical explanations

of noise storms.

Another potentlally-rewardlng result of future 92 cm VIA observations

will be new information on the middle corona that is blocked from vlew by the

occulting disks of coronagraphs. In the low corona detected at 6 cm and 20 cm

wavelength, magnetism dominates plasma motion and the VLA detects the

microwave counterpart of coronal loops (Kundu and Lang 1985). In the outer

corona, however, the solar wind drags the solar magnetic field out into

interplanetary space. The 92 cm VIA observations will refer to a region

located between the field-dominated low corona and the plasma-dominated outer

corona. We call this region the middle corona. It is expected to contain

large-scale coronal loops whose magnetic field lines connect different active

regions and open magnetic regions whose magnetic field lines are drawn out

into interplanetary space.

Future 92 cm VLA observations of open and closed magnetic regions in the

middle corona may resolve uncertainties over the origin of coronal transients

or mass ejections in which loop-shaped, magnetlcally confined plasma rises and

expands outwards into the solar wind. They will also provide information

about the unknown origin of various kinds of declmetrlc bursts Includlng those

of Type I, Ill and IV. Future VIA studles of the middle corona may even

provide new clues to the unknown source of the solar wind.
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FIGURE LEGENDS

Fig. Io The tlme profile of a solar noise storm observed with one

Interferometer pair of the Very Large Array (VLA) at 92 cm wavelength. The

separation of the two antennae was 0.8 km_ providing an angular resolution of

240" at 92 cm during source transit. Here the data have been smoothed over

33.3 s. Splke-llke bursts are superimposed upon a slowly-varylng background;

both of these components were 95 ± 5% rlght-hand clrcularly polarlzed. VLA

snapshot maps of the spikes denoted by 3, 4, 5, 6 and 7 are presented in

Figure 2, and VLA maps covering the longer intervals denoted by 1 and 2 are

shown in Figure 4.

Fig. 2. Very Large Array snapshot maps of successive peaks In a solar noise

storm at 92 cm wavelength. These peaks are denoted by 3, 4, 5, 6 and 7 in

Figure I° The snapshot maps, each lastlng 13 s or 30 s, show no substantial

change In the shape or size of the storm source over a period of two hours.

Here the synthesized beamwldth Is denoted by the black dot, and the flduclal

marks on the axes are separated by I00". The contours mark levels of equal

brightness temperature, TB, wlth an outermost contour of T B = 3.8 x 10 6 K, a

contour interval of 2.5 x 10 6 K and a peak brightness temperature of T B = 1.6

x 10 7 K.

Fig. 3. A Very Large Array (VLA) synthesls map of a solar storm at 92 cm

wavelength is superimposed on a Kitt Peak National Observatory (KPNO)

maguetogram taken on the same day. The VLAmap covered the one hour time

interval between 2300 and 2400 UT; its synthesized beamwldth is denoted by the

black spot. The contours mark levels of equal brightness temperature, TBp

with an outermost contour of TB - 1.0 x 106 K and a contour Interval of 7.2 x
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105 K. Dark areas on the magnetogram correspond to negative magnetic polarity

wlth the magnetic field lines pointing in towards the Sun; whereas light

magnetogram areas correspond to outward regions of positive magnetic polarity.

Two dlpolar regions are shown on the magnetogram - AR 4731 near'he llmb and

AR 4732. The 92 cm source is attributed to plasma radiation in the ordinary

mode of wave propagation along magnetic field lines connected to the dark

negative spot of AR4732. The angular dlsplacement between this spot and the

92 cm source corresponds to a radial altitude of 0.2R. above the photosphere.

The magnetogram was kindly provided by Jack Harvey of the Natlonal Solar

Observatory.

Fig. 4. A comparison of the 92 cm VLA time profile of a solar noise storm

(top) with the soft X-ray emission detected by the GOES satellite (bottom).

The X-ray emission precedes the 92 cm radiation by about 30 m. If we assume

that the noise storm is excited by a disturbance that originates during the

soft X-ray event_ then that disturbance must travel outwards at a velocity of

v _ I00 km s-I if it moves across the distance of d ~ 0.2 R in 30 m.

Fig. 5. Very Large Array (VLA) synthesis maps for a one hour Interval that

Includes the beginning of a solar noise storm (left) and for the subsequent

one hour interval that indues the first maximum peak in the noise storm

(right). These two intervals are respectively denoted by I and 2 in Figure I.

Both the onset and early excitation of the 92 cm noise storm conslst of

two sources with angular diameters of 40" and an angular separation of 120".

Emission between the two sources became more intense later in the noise storm

(see Figures 2 and 3). The he flduclal marks on the axes are separated by

I00"_ and the contours mark levels of equal brightness temperature TB, with an

outermost contour of T B = 1.0 x 106 K and a contour interval of 7.2 x 105 K.
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V. LECTURES AT PROFESSIONAL MEETINGS.

The Principal Investigator, Kenneth R. Lang, gave an invited talk entitled

"Microwave Emission from the Sun and Nearby Stars" at the Tokyo Astronomical

Observatory in November, 1985. This was followed by three lectures in, April,

1986 at the NASA Workshop on Coronal and Prominence Plasmas held at the Alrlle

Conference Center in Warrenton, Virginia. These lectures, which are reproduced

in Sections III E, III F, and III G, will be published in the Workshop Proceedings.

They are entitled "Coronal Diagnostics", "Coronal Plasmas on the Sun and Nearby

Stars" and'"Compact, Variable, Moving Sources Observed on the Sun at 2 Centimeters

Wavelength".

During the period 20 to 26 June, 1986, Lang attended the Committee of

European Radio Astronomers (CESRA) Workshop on Radio Continua During Solar Flares

held at Aubigney-Sur-Nere, France. The workshop was divided into six sessions:

acceleration processes, particle storage, emission processes, radio pulsations,

cyclotron masers-spikes, and hard X-ray bursts. Lang attended all of the sessions,

presenting a paper entitled "VLA Observations of Coronal Loops at 20 cm and 92 cm

r

!_ Wavelength" at the session on emission processes. He also presented a paper on

"Radio Emission from Flare Stars" during the session on cyclotron masers-splkes."

! Lang next attended the XXVI meeting of the Committee on Space Research

(COSPAR) held at Toulouse, France from 28 June to I0 July 1986. He presented a

paper entitled "Solar Burst Precursors and Energy Build Up At Microwave Wavelength

during Symposium 5 on Synopsis of the Solar MaxlmumAnalysls. This paper, which

is reproduced in Section III D, will be published in the appropriate volume of

Advances in Space Research.
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VI. FUNDING AND FUTURE PROSPECTS

This ongoing research is funded by NASA Grant NAG 5-501 in the amount of

$25,000 from I February 1985 to 31 March 1986 and $28,245 from I April 1986 to

31 March 1987. We spent the initial $25,000 allocation by 31 March 19_6 and

compeleted all of the proposed research for the period from I February 1985 to

31 March 1986. The second $28,245 allocation is expected to be spent by

31 March 1987 when all of the proposed research from I April 1986 to 31 March

1987 will be completed.

Our fdture research will be the subject of a $48,180 proposal to the next

round of the Solar Maximum Mission Guest Investigator Program. This will be a

one-year proposal for the period between I April 1987 and 31 March 1988.

During this period we will emphasize visits to the Goddard Space Flight Center

for collaborative comparisons of existing soft X-ray (XRP) data with existing

VLA observations of coronal loops. The existing VLA data are listed in Table i

at the end of this section. These future comparisons of existing XRP and VLA

data are a natural extension of the work discussed in Sections IV-I and IV-J.

Our future research will also involve unique observations of the inner

solar corona at decimetrlc wavelengths (I0 cm to i00 cm). New technological

developments at the Very Large Array and the Nancay Radioheliograph will make

it possible to observe this region with hitherto unavailable resolution in

space, time and frequency. The Very Large Array (VLA) will be used at 20 cm

wavelength where it can be used to infer the physical properties of coronal

loops. This is a natural extension of the work reported in Sections II B,

III D, III E, and III F. The VLA will also be used at the longer wavelength

of 92 cm where it will detect larger-scale coronal features. This is a

natural extension of the first VLA solar observation at 92 cm wavelength that

was reported in Section III K. The 20 cm observations can be compared with
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simultaneous Solar Maximum Mission (SMM) XRP observations, while the 92 cm data

may be compared with SMM C/P data that refer to the outer solar corona. The

high temporal (20 msec) and frequency (five bands of variable spacing) of the

Nancay Radioheliograph may additionally detect the signatures of pulsa_Ing

and/or coherent burst mechanisms. It will be used at several wavelengths near

92 cm and 183 cm.

The combined results of our forthcoming SMM Guest Investigator proposal

will specify the three-dlmenslonal structure of both quiescent active regions

and solar bursts. Large-scale quiet Sun features such as coronal holes,

i_ filament cavities and magnetically weak regions will also be observed, helping

_ to resolve uncertainties over the temperature _ density and magnetic structure

in the low solar corona. The proposed observations will provide valuable new

insights to the driving mechanisms and initiating source for decimetric

bursts that currently remain a mystery. They may also resolve uncertainties

over the origin of coronal transients or mass ejections in which loop-shaped,

magnetically confined plasma rises and expands outwards into the solar wind.

The combined SMM, VLA and Nancay data may, for example, tell if mass ejections

i are initiated by erupting filaments, rising loops or magnetic reconnection in

the low corona.
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Table I. Existing Very Large Array (VIA) observations of coronal loops

that may be compared with existing Solar Maximum Mission (SMM) XRP

observations of the same active regions.

DATE ACTIVE COORDINATES GROUP* TYPE**

REGION
_URST

TIME

May 5, 1979 McM. 15999 N00 W22 K

May 16, 1981 AR 3106/7 NI2 El4 K

May 17, 1981 AR 3106/7 NI2 E01 K

May 18, 1981 AR 3106/7 NI2 WI3 K

May 19, 1981 AR 3106/7 N12 W26 K

June 13, 1981 AR 3159 $26 E44 LW

June 14, 1981 AR 3159 $26 E32 LW

June 15, 1981 AR 3159 $26 El9 LW

June 16, 1981 AR 3159 $26 E07 LW

July 12, 1982 AR 3804 NI3 E35 LW

July 13, 1982 AR 3804 NI3 E21 LW

July 19, 1982 AR 3804 NO9 W64 LW

LW

July 20, 1982 AR 3804 Nll W77 LW

B,Q

Q
Q
Q
Q
Q
Q
Q
Q
Q

" _ .... _I-_ "

B

B

Q
Q
B

Q
B

B

July 28, 1982 AR 3828 N06 E27 LW Q

March 6, 1983 M S16 WI3 K Q

March 7, 1983 m S14 W21 K Q

May I, 1983 AR 4154 S14 W24 K Q

May 2, 1983 AR 4165 ? K Q

May 2, 1983 AR 4154 S14 W37 K Q

Jan. 28, 1984 AR 4398 NI4 Wll LW Q

Jan. 28, 1984 AR 4398 NI4 W24 LW Q,

May 30, 1984 AR 4500 GH Q

June 4, 1984 AR 4508 NO6 E57 LW Q

July 8, 1984 AR 4532 S07 El8 LW Q

July 14, 1984 AR 4537 $06 El2 LW Q

July 15, 1984 AR 4539 S09 W23 LW Q

June 7, 1985 AR 4663 N01 E65 LW Q

June 7, 1985 AR 4663 N01 E52 LW Q

1905-1909

1905-2007

1841-1843

2149-2151

2310-2312

B 1820-1850

*K denotes observations by Kundu's group, GH delineates an eclipse observation by

Gary and Hurford, and LW describes the VLA observations of coronal loops by Lang
and Willson.

**Q denotes a quiescent, or non-flarlng, coronal loop and B denotes a bursting one.
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